

This project has received funding from the European Commission, under the Horizon
Europe research and innovation programme, Grant Agreement No 101094349.
http://www.craeft.eu/

CRAEFT

Maker-Material-Negotiation
Model and CAP

Project Acronym Craeft

Project Title Craft Understanding, Education, Training, and Preservation for Posterity and
Prosperity

Project Number 101094349

Deliverable Number D2.2, second release

Deliverable Title Maker-Material-Negotiation Model and CAP

Work Package WP2

Authors Carlo Meghini, Valentina Bartalesi, Nicolò Pratelli, Voula Doulgeraki, Ioanna
Demeridou, Nikolaos Partarakis, Xenophon Zabulis

Number of pages 119

http://www.craeft.eu/

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 2/119

Executive summary

The present deliverable reports the work done in Tasks T2.3 “Maker-Material-Negotiation model” and
T2.4 “CRAEFT Authoring Platform” during the second year of the project. It is an update of the version
of deliverable D2.2 released at M12. The updates to the ontology are all additions, which means that the
updated ontology is backwards compatible with the previous one. These additions are substantial and
have been made in response to the inadequacies of the ontology that have been discovered by using the
ontology to represent realistic craft instances.

For self-containedness and readability, the present document does not merely report the updates, but
it is structured as its first version so that a reader can find in here all the information without having to
read the first version. For the reader who has already read the first version, here is a summary of the
main additions and the rationale behind them.

● Generalised properties have been introduced to empower the ontology for the representation
of domain relations that apply to several classes, having a different range for each such class. A
generalised property is axiomatized following a specific pattern.

● A top class has been added for representing the entities that pertain to each of the three levels
in which the ontology is articulated: the schema, the virtual and the real level. This addition
permits a better structuring of the ontology and eases the expressions of axioms on the domain
and range of properties.

● For identical reasons, one specific type of narrative has been added for the representation of
crafts.

● One property for re-using step schemas within process schemas has been added, allowing us to
preserve all constraints on the structuring of schemas while easing their specification.

Other, minor additions have also been made, such as the addition of a duration property for step
schemas. These additions do not deserve a specific mention as they belong to the routine maintenance
of the ontology. Readers are anyway advised to re-read Sections 2 and 3 of the document.

The document is divided into two main parts: the first part comprises Section 2, which describes the
Maker-Material-Negotiation model; the second part comprises Section 3, which describes the CRAEFT
Authoring Platform.

Section 2, after introducing notational conventions (Section 2.1) and describing the structure of IRIs used
for the identification of CRAEFT resources (Section 2.2) is structured into the following main parts:

● Section 2.3 recapitulates the Narrative ontology, which forms an important conceptual basis of the
CRAEFT ontology since it axiomatizes the vocabulary for describing processes and actions from a
very general point of view. The Narrative Ontology has been used for craft representation in the
Mingei innovation action, the predecessor of the CRAEFT project, and provides basic classes and
properties for representing structured courses of events (called fabulae) documented through
knowledge objects of multimedia nature (called narrations) linked to events by an ad hoc function
(called reference function). To achieve its goals, the Narrative ontology provides fundamental
notions such as agents, time and space, and does so by relying on a core ontology, the CIDOC CRM,

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 3/119

and domain ontologies, such as OWL Time, all standards de jure or de facto. Standards are also the
language in which the Narrative Ontology is expressed (OWL 2 DL) and the notation used (RDF
Turtle). Needless to say, the CRAEFT Ontology adopts the standard-based approach of Narrative
Ontology to achieve maximum interoperability. Section 2.3 is organized into several sub-sections:
after the sub-sections presenting the main classes and properties, it includes sub-sections dealing
with specific aspects, such as the representations of actor roles in events, time modelling, space, and
time-varying properties. The Narrative ontology has been enriched with new classes and properties
to account more properly for presentation fragments.

● Section 2.4 gives a conceptualisation of these entities, forming the basis of the ontology introduced
in the subsequent section. The conceptualisation is strongly influenced by the specific context of the
project, which requires three levels of representation: the schema level, where processes and
actions are described by plans providing the general structure; the virtual level, where processes and
actions schemas are instantiated by simulating them for given input parameters; the real level,
where virtual processes and actions are enacted in a real context. Process and action schemas are
modelled based on the standard set by activity diagrams of the unified Modelling language, that is
graphs comprised of activity nodes and transitions. A subset of the machinery provided for activity
diagrams is employed by the conceptualisation, adequate for the representation of the general
structure of crafts. Virtual processes and actions are modelled to be aligned with the simulator that
computes their outcomes. Real processes and actions, finally, are modelled as fabulae and events,
respectively, of the Narrative Ontology. This Section includes the above-mentioned changes from
the first version.

● Section 2.5 provides an axiomatization of the conceptualisation presented in the previous Section,
in the OWL 2 DL language, which is the most expressive language of the OWL family retaining
decidability. An important result of this axiomatization is that it covers all the laws that link the
concepts involved except one, the law establishing the correct relation between the properties
declared in an action schema and the properties used in a virtual action that is an instance of that
schema. This law cannot be expressed in OWL 2 DL because properties in an action schema are
treated as individuals. This Section is structured in two main parts: the first part covers activity nodes
of process schemas, and includes actions; the second part covers control nodes of process schemas.
This Section is changed as a consequence of the changes in the conceptualisation reported in the
previous Section.

● Section 2.6 covers the usage of popular names for specific groups of entities drawn from widely used
dictionaries, namely, the Art and Architecture Thesaurus of the Getty Foundation, the Catalogue of
Art Collections, the Thesaurus of Geographic Names, and the Union List of Artist Names. The source
code for these enhancements can be found at https://zenodo.org/records/10532597.

● Section 2.7, which in the previous version presented the representation of several craft processes
and actions in the CRAEFT Ontology, has been removed from this version, since at this stage of the
project several craft instances have been completed and are reported elsewhere.

Section 3 outlines the main features of the Web-based, online, multiple-user authoring platform for the
documentation of traditional crafts. The Craeft Authoring Platform (CAP) is an extension of the Mingei
Online Platform (MOP) developed in the Mingei Innovation Action. The extension provides support for
the representation of processes and actions based on the Craeft Ontology. Although it is functional and
accessible online, the CAP is still under development and, thus not yet in its final form. The present
deliverable describes the initial activities performed on the CAP, concerning important aspects that could

https://zenodo.org/records/10532597

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 4/119

not be tackled in Mingei due to lack of time and others that were discovered during the present research.
Specifically,

● Sections 3.1 and 3.2 contextualise the progress until the start of Craeft and briefly describe the MOP.
Section 3.3 describes an overview of the planned improvements planned.

● In Section 3.4, we describe the addition of multilingualism features.
● In Section 3.5, we describe the features that automate the establishment of cross-references

between knowledge elements in the CAP, to check the integrity and find mistakes, such as
unreferenced entities and dead links.

● In Section 3.6, we describe how we use the European OpenAIRE infrastructure Zenodo to store our
digital assets and submit them to Europeana extensively so that other heritage institutions can
follow the same technique. In Section 3.7, we describe technical enhancements, such as the export
of knowledge elements to file (Section 3.7.1) and the export of files for automatic ingestion of assets
to Europeana (Section 3.7.2).

● Finally, in Section 3.7.4, we present an upgrade of the way that 3D models are viewed online in the
CAP.

Finally, Section 4 concludes and summarises this deliverable.

Document history

Date Author Affiliation Comment

4/2/2025 Carlo Meghini CNR First draft

9/2/2025 Xenophon Zabulis FORTH Revised

Abbreviations

3D Three dimensional

AAT Arts and Architecture Thesaurus

CAP Craeft Authoring Platform

CH Cultural Heritage

CONA Catalogue of Art Collections

HTML Hypertext Markup Language

MoCap Motion Capture

MOP Mingei Online Platform

TGN Thesaurus of Geographic Names

RDF Resource Description Framework

RS Research Space

ULAN Union List of Artist Names

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 5/119

UNESCO United Nations Educational, Scientific and Cultural Organization

URL Uniform Resource Locator

XML Extensible Markup Language

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 6/119

Table of contents
Executive summary ... 2

Document history ... 4

Abbreviations .. 4

Table of contents .. 6

1 Introduction ... 8

2 The CRAEFT Ontology... 9

2.1 Notational conventions ... 11

2.2 Resource identification ... 11

2.3 The Narrative Ontology ... 12

2.3.1 Main Classes ... 13

2.3.2 Main Properties ... 16

2.3.3 Representing actor roles in events .. 20

2.3.4 Modelling presentation fragments .. 21

2.3.5 Modelling Time .. 22

2.3.6 Modelling Space ... 24

2.3.7 Modelling time-varying properties .. 27

2.4 Modelling processes ... 28

2.4.1 Processes .. 28

2.4.2 Actions.. 30

2.4.3 Schemas ... 32

2.5 An ontology of processes and actions .. 35

2.5.1 Activity Schemas .. 36

2.5.2 Transitions .. 72

2.5.3 Reusing step schemas .. 80

2.6 Linking to standard dictionaries .. 83

2.6.1.1 AAT .. 83

2.6.1.2 CONA ... 87

2.6.1.3 TGN and Geonames .. 88

2.6.1.4 ULAN ... 90

2.6.1.5 Additional dictionaries .. 92

2.6.1.6 Implementation .. 94

3 The CRAEFT Authoring Platform .. 96

3.1 Representation of knowledge in the MOP/CAP ... 97

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 7/119

3.2 User Interface ... 97

3.3 Progress in Craeft .. 101

3.4 Multilingualism ... 101

3.4.1 Objectives ... 101

3.4.2 Methodology .. 102

3.4.3 Implementation notes ... 103

3.5 Cross-references ... 103

3.5.1 Objectives ... 104

3.5.2 Methodology .. 104

3.6 Zenodo storage ... 107

3.6.1 Technical advantages ... 108

3.6.2 Ecological advantages .. 109

3.7 Other enhancements .. 109

3.7.1 Knowledge element to file ... 109

3.7.2 Export for Europeana ingestion ... 110

3.7.3 Online viewing of 3D models ... 111

3.7.4 Media object types .. 112

3.7.5 Mosaics .. 113

4 Conclusions .. 116

References .. 118

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 8/119

1 Introduction

This document provides a detailed account of the Maker-Material-Negotiation model, termed “CRAEFT
Ontology”, and of the CRAEFT Authoring Platform. It is divided into two main parts, each devoted to one
of these two topics.

The first part, after some introductory information, recapitulates the narrative ontology and then presents
an ontology of processes and actions, which is required to achieve the CRAEFT objectives. The latter part
is the novel contribution of CRAEFT. It extends the Mingei Ontology by providing richer representations
and is tightly coupled with the SIMULIA Abaqus software employed by the project to implement the
mathematical models that compute the effects of actions. SIMULIA Abaqus is a suite of software
applications for finite element analysis (FEA) and computer-aided engineering (CAE). Developed by
Dassault Systèmes, Abaqus is widely used for engineering simulations, including stress analysis, heat
transfer, and fluid dynamics. Abaqus is commonly used in aerospace, automotive, energy, and biomedical
engineering industries to design, test, and optimise products and processes through virtual prototyping
and simulation. The linking to standard vocabularies concludes this part.

The second part gives general information about the CRAEFT Authoring Platform, which at this stage is a
minimal extension of the Mingei Online Platform that can manage the new concepts provided by the
CRAEFT Ontology.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 9/119

2 The CRAEFT Ontology

The CRAEFT Ontology (from now on, simply “CrO”) is used to represent the knowledge about crafts that
the CRAEFT project is targeted to represent and preserve.

Following the approach successfully adopted in Mingei, the CrO views a craft as a narrative, composed by
a fabula and a narration [6].

● The fabula of the craft is the craft process, that is, the complex activity situated in time and space
that is carried out by a group of people to produce a craft. For simplicity, from now on we will use
the term “process” with the meaning of “craft process”, unless otherwise specified.

● The narration of a craft is given by the documentation of the crafting process, consisting of texts,
videos, images and data, collected during the execution of the craft, and related to the events of
the fabula in the same way media objects are related to the events of a fabula.

At the same time, CrO tries to respond to the representational requirements that have emerged during
the collaboration with craft experts striking a balance amongst several, often conflicting aspects:
expressive power, usability, interoperability and efficiency. In particular,

● for expressive power, CrO is expressed in OWL 2 DL [1], currently the most expressive decidable
language of the OWL family;

● for usability, CrO expresses a conceptualisation directly derived from the interaction with craft
experts, to reflect the vision of the practitioners of the craft domain;

● for interoperability, CrO rests on several standards, the most prominent of which are: the very
language in which it is expressed, OWL 2 DL, a standard of the W3C, and the top ontology CIDOC
CRM [2][3], from a few decades an ISO standard with wide adoption in the Cultural Heritage
domain [4]. Other standards on which CrO relies will be noted in due course; the axioms linking
the CrO classes and properties to the CRM vocabulary are presented together with those defining
them;

● for efficiency, CrO is implemented on top of a platform that allows fine-tuning of performances.

Technically, CrO is an OWL 2 DL application ontology (according to the terminology introduced in [5]) that
rests on the top ontology CIDOC CRM as its conceptual backbone1 and on several domain ontologies:

● The Narrative Ontology, a domain ontology focused on the representation of narratives [6];
● OWL Time, a domain ontology recommended by W3C for the representation of time [7];
● Dublin Core for simple resource description [8].

In addition, CrO includes extensions to the above ontologies needed to model specific aspects of reality
relevant to CRAEFT, such as process schemas for which CrO relies on UML Activity Diagrams, a de facto
standard [9]. CrO also uses the Semantic Web languages for modelling knowledge, in particular:

● the Resource Description Framework (RDF) for basic knowledge representation [10];

1 CrO uses the OWL 2 DL expression of the CIDOC CRM, named “CRM Erlangen”, available from:

https://www.erlangen-crm.org//current-version

https://www.erlangen-crm.org/current-version

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 10/119

● the RDF Schema Vocabulary for simple ontology modelling [11];
● OWL 2 DL for rich ontology modelling [1];
● XML Schema for datatypes [12].

Table I below provides the namespaces of these ontologies and the prefix we use in the CrO for each of
these namespaces.

Table 1 The ontologies used in CrO, their prefixes and their namespaces

Prefix Ontology Namespace

craeft: The CRAEFT Ontology <https://craeft.eu/ontology/current/>

narr: The Narrative Ontology <https://dlnarratives.eu/ontology#>

rdf:
Resource Description Framework
(RDF) Vocabulary

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

rdfs: RDF Schema Vocabulary <http://www.w3.org/2000/01/rdf-schema#>

owl:
Web Ontology Language (OWL)
Vocabulary

<http://www.w3.org/2002/07/owl#>

xsd: XML Schema <http://www.w3.org/2001/XMLSchema#>

ecrm:
The CIDOC CRM Ontology
(Erlangen expression)

<http://erlangen-crm.org/current/>

time: OWL Time Ontology <http://www.w3.org/2006/time#>

geo: OGC GeoSPARQL <http://www.opengis.net/ont/geosparql#>

crmgeo: CRMgeo Spatiotemporal model
<https://www.cidoc-
crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.r
dfs>

The rest of this Section is structured as follows:

● Section 2.1 introduces some notational conventions followed in the presentation of the ontology.
● Section 2.2 presents the identification of resources in the CrO.
● Section 2.3 briefly recapitulates the narrative ontology.
● Section 2.4 presents a conceptualisation of the notions central to the CRAEFT project, namely

processes and actions.
● Section 2.5 axiomatizes the conceptualisation given in the previous Section.
● Section 2.6 extends the CrO with links to standard vocabularies.

https://craeft.eu/ontology/current/
https://dlnarratives.eu/ontology#MOFragment
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://erlangen-crm.org/current/
http://www.w3.org/2006/time
http://www.opengis.net/ont/geosparql
https://www.cidoc-crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.rdfs
https://www.cidoc-crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.rdfs
https://www.cidoc-crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.rdfs

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 11/119

2.1 Notational conventions

Any symbol belonging to the OWL 2 DL language, whether logical or non-logical, is written in this font.
International Resource Identifiers (IRIs, from now on) is written in the standard prefixed notation, in which
the absence of a prefix indicates that the craeft: prefix is used.

The non-prefix parts of class names are singular nouns of the English language reflecting the class
semantics and are always capitalised. For instance, the class of processes is craeft:Process. Similarly,
the non-prefix part of property names are singular expressions of the English language reflecting the
property semantics and are written in the so-called Camel notation: the first letter is not capitalised while
any other English word in the name is capitalised. For instance, the property connecting a process to its
start event is craeft:hasProcessStart, or simply hasProcessStart.

The conceptualization of the various aspects of the ontology is presented in the text. The ensuing axioms
are stated using the following notation:

Every axiom is given in a box like this and is written in a terse natural language very close to the
logical expression of the axiom in the OWL 2 DL language.

For perspicuity, a subset of the axioms is given graphically, according to the following notation, well-
known in database design:

Expressions of the OWL 2 DL languages that are stated in the functional notation [1] according to the
following notation:

OWL 2 DL axiom

2.2 Resource identification

CrO conforms to the best practices for semantic interoperability, in the context of the Linked Data
paradigm that the CRAEFT project adopts for the data that it collects or creates to reach its objectives. A
crucial issue in this respect is the identification of resources, which concerns the policy followed by CRAEFT
for assigning IRIs to the resources it manages.

The policy is given by the following principles:

1. A new IRI from the CRAEFT namespace is minted for every resource referenced in the CRAEFT
Knowledge Base. This IRI has the form <https://craeft-project.eu/resource/N>, where:
http://craeft-project.eu/ identifies the CRAEFT namespace, and N is a unique progressive number,
identifying this resource in the CRAEFT namespace. In this way, each resource is assigned a unique

https://craeft-project.eu/resource/N

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 12/119

integer number N, regardless of the class to which the resource belongs, which gives rise to a
unique IRI.

2. For popular resources that have one or more identifiers in other Linked Data datasets, such as
Wikidata, VIAF, etc., an axiom of the form

ObjectPropertyAssertion(craeft-IRI owl:sameAs other-IRI)

is asserted in the CRAEFT knowledge base, where craeft-IRI is the IRI of the resource described
in the previous point and other-IRI is any other popular IRI of the resource.

The rationale for these principles is to follow the recommendations on Linked Data2, which are:

● Use URIs as names for things
● Use HTTP URIs so that people can look up those names.
● When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)
● Include links to other URIs. so that they can discover more things.

In particular, the first principle follows the first three recommendations, since a CRAEFT identifier is an
HTTP IRI the de-referenciation of which is under the control of the CRAEFT project. In this way, the project
has the opportunity to deliver a CRAEFT web page or an RDF graph for describing the resource to the
human or digital users, respectively, who ask for any CRAEFT IRI.

The second principle follows the fourth recommendation on Linked Data by linking the Mingei knowledge
base to other graphs containing knowledge about the same resources.

2.3 The Narrative Ontology

 A narrative is conceptualised as consisting of two main elements:

● The narration is a symbolic object giving how the author tells the story of the narrative;
historically, a narration is expressed in natural language, whether written or oral, and is rendered
as a text; in recent years, we have more and more digitally born narrations; and

● The fabula is the way the story of the narrative happened in reality and consists of the events
making up the story of the narrative in chronological order.

Fragments of the narration may be linked to the events of the fabula, to illustrate those events and, in
general, the story told by the narrative. These links show the third component of a narrative according to
narratology [6], the plot of the narrative, that is how the narrator has chosen to arrange the real events
in the narration to make the story worth to be narrated.

In both cases, we view a narration as an arrangement of symbols, which can be the digitisation of a natural
language narration, or a born-digital narration. Fragments of a narration may be linked to the events of

2 https://www.w3.org/DesignIssues/LinkedData.html

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 13/119

the fabula, to illustrate those events and, in general, the story told by the narrative. This way of
conceptualising narratives stems from basic studies in narratology [6] and is used to develop the Narrative
ontology.

In summary, the main classes and properties of the Narrative Ontology are depicted in Figure 1. A more
detailed account of the main classes and properties is given in the remaining parts of this Section.

Figure 1 Main classes and properties of the Narrative Ontology.

2.3.1 Main Classes

A narrative is an instance of class narr:Narrative, a subclass of ecrm:E73_Information_Object, the
CRM class that comprises3 “identifiable immaterial items, such as poems, jokes, data sets, images, texts,
multimedia objects, procedural prescriptions, computer program code, algorithm or mathematical
formulae, that have an objectively recognizable structure and are documented as single units”. As such, is
ecrm:E73_Information_Object a natural fit for narratives.

narr:Narrative is a class

narr:Narrative is a subclass of ecrm:E73_Information_Object

A narration is the part of the narrative that narrates the narrative’s fabula using a natural, in the sense of
non-formal, language. In CrO, a narration is an instance of class narr:Narration, a subclass of
ecrm:E89_Propositional_Object, which “comprises immaterial items, including but not limited to
stories, plots, procedural prescriptions, algorithms, laws of physics or images that are, or represent in some
sense, sets of propositions about real or imaginary things and that are documented as single units or serve
as a topic of discourse”.

narr:Narration is a class

3 All quotations about CRM classes or properties are from the CIDOC CRM v. 7.3 (May 2023) Official Specification,

retrievable from: https://www.cidoc-
crm.org/sites/default/files/cidoc_crm_version_7.2.3%5B4%20Sep%202023%5D.pdf

https://www.cidoc-crm.org/sites/default/files/cidoc_crm_version_7.2.3%5B4%20Sep%202023%5D.pdf
https://www.cidoc-crm.org/sites/default/files/cidoc_crm_version_7.2.3%5B4%20Sep%202023%5D.pdf

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 14/119

narr:Narration is a subclass of ecrm:E89_Propositional_Object

Narrations are composed of fragments which may be meaningful units, such as the chapters in a book or
the scenes in a movie, or just arrangements of symbols that are factored out for some purpose, such as
the trigrams occurring in a text or a sequence of photograms in a movie. Such fragments are instances of
class narr:NarrationFragment, a subclass of ecrm:E90_Symbolic_Object. Class narr:Narration is a
subclass of narr:NarrationFragment, since a whole narration is just a special case of a piece of narration.
As ecrm:E73_Information_Object is a subclass of ecrm:E90_Symbolic_Object, an instance of
narr:Narrative is also an instance of ecrm:E90_Symbolic_Object. Semantically, though, a narration and a
narrative are disjoint objects, thus CRO declares disjointness of narr:NarrationFragment and
narr:Narrative.

narr:NarrationFragment is a class

narr:NarrationFragment is a subclass of ecrm:E90_Symbolic_Object

narr:Narration is a class

narr:Narration is a subclass of narr:NarrationFragment

narr:NarrationFragment is a disjoint from narr:Narrative

Similarly to a narration, a presentation is an illustration of the fabula in a way that is somewhat alternative
to the narration, which is the illustration of the fabula chosen by the author. For this reason, the class of
presentations, narr:Presentation, and of their fragments, narr:PresentationFragment, are subclasses of
narr:Narration and narr:NarrationFragment, respectively. As a consequence, they are both subclasses of
ecrm:E90_Symbolic_Object, disjoint from narr:Narrative.

narr:PresentationFragment is a class

narr:PresentationFragment is a subclass of narr:NarrationFragment

narr:Presentation is a class

narr:Presentation is a subclass of narr:PresentationFragment

narr:Presentation is a subclass of narr:Narration

Graphically (the “D” diamond stands for disjointness of the connected classes):

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 15/119

Figure 1 Presentations and narrations.

The actual contents of narration fragments (hence those of narrations, presentations and presentation
fragments) are instances of class narr:MObject, a subclass of RealObject (to be introduced later) and of
ecrm:E90_Symbolic_Object, having as instances multimedia objects. Media objects are disjoint from
both narrations and narratives. Types of media objects are instances of class narr:MOType, a subclass of
ecrm:E55_Type.

narr:MObject is a class

narr:MObject is a subclass of RealObject

narr:MObject is a subclass of ecrm:E90_Symbolic_Object

narr:MObject is a disjoint from narr:Narrative

narr:MObject is a disjoint from narr:Narration

narr:MOType is a class

narr:MOType is a subclass of ecrm:E55_Type

A fabula consists of the events narrated by a narrative, in chronological order. As such it is an instance of
class narr:Fabula, a subclass of class ecrm:E4_Period, which “comprises sets of coherent phenomena
or cultural manifestations occurring in time and space”. As ecrm:E4_Period is disjoint from
ecrm:E77_Persistent_Item and ecrm:E77_Persistent_Item is a super-class of
ecrm:E90_Symbolic_Object, narr:Fabula turns out to be disjoint from all classes introduced so far.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 16/119

narr:Fabula is a class

narr:Fabula is a subclass of ecrm:E4_Period

To represent the events of a fabula, the CRO re-uses class ecrm:E5_Event, which “comprises distinct,
delimited and coherent processes and interactions of a material nature, in cultural, social or physical
systems, involving and affecting instances of E77 Persistent Item in a way characteristic of the kind of
process. Typical examples are meetings, births, deaths, actions of decision taking, making or inventing
things, but also more complex and extended ones such as conferences, elections, the building of a castle,
or battles”. Events also include actions, which are viewed as events with an intention.

2.3.2 Main Properties

The connection between a narrative and its fabula is captured by property narr:hasFabula. The relation
captured by this property is a generic semantic relation, in that it connects an information object with a
set of phenomena described by that object. Therefore it is a sub-property of ecrm:E89_P129_is_about,
which “describes the primary subject or subjects of an instance of E89 Propositional Object”. We note the
narr:Narrative is a subclass of ecrm:E73_Information_Objects, therefore every narrative is also an
instance of ecrm:E89_Propositional_Object. For convenience, also the inverse property
narr:isFabulaOf is introduced. Narratives and fabulae are one-to-one.

narr:hasFabula is an object property

narr:hasFabula is a subproperty of ecrm:P129_is_about

The domain of narr:hasFabula is class narr:Narrative

The range of narr:hasFabula is class narr:Fabula

narr:isFabulaOf is an object property

narr:isFabulaOf is the inverse property of narr:hasFabula

An instance of class narr:Narrative is connected by property narr:hasFabula to exactly one
instance of class narr:Fabula

An instance of class narr:Fabula is connected by property narr:isFabulaOf to exactly one instance
of class narr:Narrative

The connection between a narrative and its narration is captured by property narr:hasNarration. This
relation is an inherence relation, linking a whole to one of its components, therefore it is a sub-property

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 17/119

of ecrm:P148_has_component, which “associates an instance of E89 Propositional Object with a
structural part of it that is by itself an instance of E89 Propositional Object”. We note that both narratives
and narrations are instances of ecrm:E73_Information_Object, hence of
ecrm:E89_Propositional_Object. For convenience, also the inverse property narr:isNarrationOf is
introduced. Narratives and narrations are one-to-one.

narr:hasNarration is a property

narr:hasNarration is a subproperty of ecrm:P148_has_component

The domain of narr:hasNarration is class narr:Narrative

The range of narr:hasNarration is class narr:Narration

narr:isNarrationOf is an object property

narr:isNarrationOf is the inverse property of narr:hasNarration

An instance of class narr:Narrative is connected by property narr:hasNarration to exactly one
instance of class narr:Narration

An instance of class narr:Narration is connected by property narr:isNarrationOf to exactly one
instance of class narr:Narrative

The connection between a fabula and anyone of its events is captured by property narr:hasEvent. The
CRM offers property ecrm:P9_consists_of, which is the composition property for temporal entities, as
it “associates an instance of E4 Period with another instance of E4 Period that is defined by a subset of the
phenomena that define the former”. Thus narr:hasEvent is a subproperty of ecrm:P9_consists_of. We
note that both fabulae and events are instances of ecrm:E4_Period.

narr:hasEvent is a property

narr:hasEvent is a subproperty of ecrm:P9_consists_of

The domain of narr:hasEvent is class narr:Fabula

The range of narr:hasEvent is class ecrm:E5_Event

The connection between a narrative and a presentation is captured by the property
narr:hasPresentation, a sub-property of narr:hasNarration, since presentations are special kinds of

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 18/119

narrations. We consider this connection simply a composition relation thus we make
narr:hasPresentation a sub-property of ecrm:P148_has_component, coherently with the fact that
both narrations and presentations are instances of ecrm:E89_Propositional_Object.

narr:hasPresentation is a property

narr:hasPresentation is a subproperty of narr:hasNarration

The domain of narr:hasPresentation is class narr:Narrative

The range of narr:hasPresentation is class narr:Presentation

The connection between a narration fragment and the event it describes is captured by property
narr:refersTo. In the CRM, this role is played by property ecrm:P129_is_about, which ”documents that
an E89 Propositional Object has as subject an instance of E1 CRM Entity”. Therefore, narr:refersTo is a
sub-property of ecrm:P129_is_about.

narr:refersTo is a property

narr:refersTo is a subproperty of ecrm:P129_is_about

The domain of narr:refersTo is class narr:NarrationFragment

The range of narr:refersTo is class ecrm:E5_Event

The connection between a narration and any of its fragments is captured by property narr:hasFragment.
The CRM offers property ecrm:P106_is_composed_of which “associates an instance of E90 Symbolic
Object with a part of it that is by itself an instance of E90 Symbolic Object, such as fragments of texts or
clippings from an image”. Therefore, narr:hasFragment is a sub-property of
ecrm:P106_is_composed_of.

narr:hasFragment is a property

narr:hasFragment is a subproperty of ecrm:P106_is_composed_of

The domain of narr:hasFragment is class narr:Narration

The range of narr:hasFragment is class narr:NarrationFragment

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 19/119

The connection between a media object and its type is captured by property narr:hasMOType, a
subproperty of the CRM property ecrm:P2_has_type.

 narr:hasMOType is a property

 narr:hasMOType is a subproperty of ecrm:P2_has_type

 The domain of narr:hasMOType is class narr:MObject

 The range of narr:hasMOType is class narr:MOType

The connection between a narration and the media object giving its content is captured by property
narr:hasContent. The CRM offers property ecrm:P129i_is_subject_of, which “documents that an
instance of E89 Propositional Object has as subject an instance of E1 CRM Entity”. For these reasons,
narr:hasContent is a sub-property of ecrm:P129i_is_subject_of.

 narr:hasContent is a property

 narr:hasContent is a subproperty of ecrm:P129i_is_subject_of

 The domain of narr:hasContent is class narr:NarrationFragment

 The range of narr:hasContent is class narr:MObject

The connection between an event and any composing sub-event of it is captured by property
narr:hasSubevent. In the CRM, the same role is played by property ecrm:P9_consists_of, which
“describes the decomposition of an instance of E4 Period into discrete, subsidiary periods. The sub-periods
into which the period is decomposed form a logical whole - although the entire picture may not be
completely known - and the sub-periods are constitutive of the general period”. Therefore, the
narr:hasSubevent property is a sub-property of ecrm:P9_consists_of.

narr:hasSubevent is a property

narr:hasSubevent is a subproperty of ecrm:P9_consists_of

The domain of narr:hasSubevent is class ecrm:E5_Event

The range of narr:hasSubevent is class ecrm:E5_Event

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 20/119

The connection between an event and any other entity on which the event causally depends is captured
by properties narr:causallyDependsOn, whose inverse is defined for convenience and is given by
narr:isInfluencedBy. The CRM does not address the causal dependency between proper events, but
offers a property that subsumes causality, namely ecrm:P15_was_influenced_by, which “captures the
relationship between an instance of E7 Activity and anything, that is, an instance of E1 CRM Entity that
may have had some bearing upon it”. As it turns out, ecrm:P15_was_influenced_by is fairly generic
having as domain class ecrm:E7_Activity and as range the most generic CRM class
ecrm:E1_CRM_Entity. Therefore we assert narr:causallyDependsOn as a sub-property of
ecrm:P15_was_influenced_by.

 narr:causallyDependsOn is a property

 narr:causallyDependsOn is a subproperty of ecrm:P15_was_influenced_by

 The domain of narr:causallyDependsOn is class ecrm:E5_Event

 The range of narr:causallyDependsOn is class ecrm:E1_CRM_Entity

 narr:isInfluencedBy is a property

 narr:isInfluencedBy is the inverse property of narr:causallyDependsOn

For the connection between an event and its spatial region of occurrence, we use the CRM property
ecrm:P7_took_place_at, which “describes the spatial location of an instance of E4 Period”. Similarly, for
the connection between an event and its temporal region of occurrence, we use the CRM property
ecrm:P4_has_time_span, which “associates an instance of E2 Temporal Entity with the instance of E52
Time- Span during which it was on-going”. Finally, for the connection between an event and the agent(s)
that performed it, we use the CRM property ecrm:P14_carried_out_by, which “describes the active
participation of an instance of E39 Actor in an instance of E7 Activity”.

2.3.3 Representing actor roles in events

In CRAEFT there was the need to specify a role for an actor in an event (e.g., Pliny the Elder is an observer
of the Vesuvius eruption). In natural language, the relation between actor, role and event is a triadic
relation, since it involves three individuals. On the other hand, ternary properties are not allowed in
Semantic Web languages. The CRM solves this problem by allowing properties of properties (e.g., P14.1,
see below). But again, this solution cannot be adopted in CRAEFT since CRAEFT is committed to Semantic
Web languages. To overcome this problem, CrO provides class narr:ActorWithRole and three properties
to properly connect its instances to events, actors and roles. The three properties are:

● property narr:hadParticipant links events to instances of narr:ActorWithRole; this is a
subproperty of the CRM property ecrm:P12_occurred_in_the_presence_of, which “describes
the active or passive presence of an E77 Persistent Item in an instance of E5 Event without implying
any specific role”;

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 21/119

● property narr:hasSubject links instances of narr:ActorWithRole to instances of class
ecrm:E39_Actor, giving the person or the person group that participates in the event; this is a
subproperty of the CRM property ecrm:P148_has_component, which is used to link propositional
objects to their components;

● property narr:hasRole links instances of narr:ActorWithRole to a type giving the role of the
actor; also this is a subproperty of the CRM property ecrm:P148_has_component.

 narr:ActorWithRole is a class

 narr:hadParticipant is an object property

 narr:hadParticipant is a subproperty of ecrm:P12_occurred_in_the_presence_of

 The domain of narr:hadParticipant is class ecrm:E5_Event

 The range of narr:hadParticipant is class narr:ActorWithRole

 narr:hasSubject is an object property

 narr:hasSubject is a subproperty of ecrm:P148_has_component

 The domain of narr:hasSubject is class narr:ActorWithRole

 The range of narr:hasSubject is class ecrm:E39_Actor

 narr:hasRole is an object property

 narr:hasRole is a subproperty of ecrm:P148_has_component

 The domain of narr:hasRole is class narr:ActorWithRole

 The range of narr:hasRole is class narr:Role

2.3.4 Modelling presentation fragments

A presentation fragment is a meaningful part of a presentation, an instance of class
narr:PresentationFragment, introduced above. Presentation segments are characterised by a few data
properties, namely:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 22/119

● Starting and ending points, which locate a segment of a presentation into the virtual space of its
playing. As such, they are not related to effective temporal entities, which are involved only when
the presentation is executed on a specific devise;

● Duration;
● Order;
● Channel, giving the output channel in which a segment belongs.

The corresponding data properties are: narr:startsAtPoint, narr:endsAtPoint,
narr:hasPresentationDuration, narr:hasPresentationSegOrder and narr:refersToChannel. All
these properties are subproperties of ecrm:P3_has_note, which “is a container for all informal
descriptions about an object that has not been expressed in terms of CIDOC CRM constructs”.

2.3.5 Modelling Time

The main classes for the representation of time are narr:TimePoint and narr:TimeInterval,
representing points and intervals of time, respectively. narr:TimePoint is equivalent to the OWL Time
class owltime:Instant, while narr:TimePoint is equivalent to the OWL Time class
owltime:ProperInterval and the CRM class ecrm:E52_TimeSpan.

 narr:TimePoint is a class

 narr:TimePoint is equivalent to owltime:Instant

 narr:TimeInterval is a class

 narr:TimeInterval is equivalent to owltime:ProperInterval

 narr:TimeInterval is equivalent to ecrm:E52_Time_Span

As already pointed out, time intervals are connected to events by property ecrm:P4_has_Time_SpanP4,
which associates an event with its interval of occurrence in time. In turn, a time interval is associated with
its starting and ending time points by properties narr:beginsAt and narr:endsAt, respectively. These
properties are equivalent to the properties owltime:hasBeginning and owltime:hasEnd, respectively,
while the CRM does not provide any analogous property to map to.

 narr:beginsAt is an object property

 narr:beginsAt is an equivalent property to owltime:hasBeginning

 The domain of narr:beginsAt is class narr:TimeInterval

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 23/119

 The range of narr:beginsAt is class narr:TimePoint

 narr:endsAt is an object property

 narr:endsAt is an equivalent property to owltime:hasEnd

 The domain of narr:endsAt is class narr:TimeInterval

 The range of narr:endsAt is class narr:TimePoint

In addition to the above properties, the ontology offers properties for associating actual data values with
time points. To this end, we adopt from the OWL Time ontology4 the following properties, all having time
instants as a domain. The following properties provide alternative ways to describe the temporal position
of an instant:

● owltime:inXSDDate, ranging on xsd:date
● owltime:inXSDDateTimeStamp, ranging on xsd:dateTimeStamp
● owltime:inXSDgYear, ranging on xsd:gYear
● owltime:inXSDgYearMonth, ranging on xsd:gYearMonth

The datatypes where these properties range also provide the ordering relations between time points (<,
=, >). In addition, we used the temporal relation primitives based on fuzzy boundaries introduced in CRM
7.1.2 (official version) to compare two events. These temporal relation primitives are reported in the
following table, where Estart and Eend are, respectively, the starting and the ending time point of event E,
while “<” and “≤” are, respectively, the “less than” and the “less than or equal” relation between time
points:

Table 2 Interval temporal properties from the CRM

4 Time Ontology in OWL. Candidate W3C Recommendations, 15 November 2022, https://www.w3.org/TR/owl-time/

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 24/119

2.3.6 Modelling Space

To represent spatiotemporal knowledge, the CrO does not define any class or property but entirely relies
on two standards: the CRMgeo, an extension of the CRM for spatiotemporal knowledge, and GeoSPARQL5,
a semantic-web aware standard for geographical information. Happily, the CRMgeo relates its classes and
properties to the classes, topological relations and encodings provided by GeoSPARQL and thus allows
spatiotemporal analysis offered by geoinformation systems based on the semantic distinctions of the
CIDOC CRM. The CRMgeo is a formal ontology intended to be used as a global schema for integrating
spatiotemporal properties of temporal entities and persistent items. It aims to provide a schema
consistent with the CIDOC CRM to integrate geoinformation. CRMgeo uses the conceptualizations, formal
definitions, encoding standards and topological relations defined by the Open Geospatial Consortium
(OGC)6. The rest of this Section briefly introduces the classes and properties of the CRMgeo that are
relevant to the CRAEFT project, and how these classes and properties are related to the corresponding
classes and properties of GeoSPARQL.

All the classes declared in the CRMgeo were given both a name and an identifier constructed according
to the conventions used in the CIDOC CRM model. For classes that identifier consists of the letter SP
followed by a number. The resulting properties were also given a name and an identifier constructed
according to the same conventions. That identifier consists of the letter Q followed by a number, which
in turn is followed by the letter “i” every time the property is mentioned “backwards”, i.e., from target to
domain.

The proposed geospatial representation complies with the OGC geoSPARQL standard, allowing geospatial
queries on knowledge bases containing geographic data in Well-Known Text (WKT)7, a markup language
for representing vector geometry objects, or Geography Markup Language (GML)8, an XML grammar
defined by the OGC to express geographical features format.

In the CIDOC CRM, an event is an instance of class ecrm:E5_Event while a place is an instance of class

5 https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
6 https://www.ogc.org/
7 https://www.ogc.org/standard/wkt-crs/
8 https://www.ogc.org/standard/gml/

https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
https://www.ogc.org/
https://www.ogc.org/standard/wkt-crs/
https://www.ogc.org/standard/gml/

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 25/119

ecrm:E53_Place. An event is associated with its place of occurrence through property
ecrm:P7_took_place_at. In the CRMgeo, ecrm:E53_Place has as subclass
crmgeo:SP2_Phenomenal_Place, which “comprises instances of E53 Place (S) whose extent (U) and
position is defined by the spatial projection of the spatiotemporal extent of a real-world phenomenon that
can be observed or measured. The spatial projection depends on the instance of SP3 Reference Space onto
which the extent of the phenomenon is projected”. An instance of class crmgeo:SP2_Phenomenal_Place
represents any place identified by an IRI in a standard gazetteer, such as Geonames for modern places,
Pleiades for ancient places. crmgeo:SP3_Reference_Space “comprises the (typically Euclidian) Space (S)
that is at rest (I) in relation to an instance of E18 Physical Thing and extends (U) infinitely beyond it. It is
the space in which we typically expect things to stay in place if no particular natural or human distortion
processes occur” (e.g., the space inside and around the Earth).

As Figure 2 shows, in CrO an instance of ecrm:E5_Event is directly linked to its (instance of)
crmgeo:SP2_Phenomenal_Place through property ecrm:P7_took_place_at.

Figure 2 The classes of CRMgeo SP2 Phenomenal Place and its link with CIDOC CRM.

An instance of crmgeo:SP2_Phenomenal_Place is linked to an instance of class
crmgeo:SP5_Geometric_Place_Expression, which “comprises definitions of places by quantitative
expressions. An instance of SP5 Geometric Place Expression can be seen as a prescription of how to find
the location meant by this expression in the real world, which is based on measuring where the quantities
referred to in the expression lead to, beginning from the reference points of the respective reference
system. A form of expression may be geometries or map elements defined in a SP4 Spatial Coordinate
Reference System that unambiguously identify locations in a SP3 Reference Space”.

Since crmgeo:SP2_Phenomenal_Place and crmgeo:SP5_Geometric_Place_Expression are subclasses
of GeoSPARQL classes geosparql:Feature and geosparql:Geometry, respectively, we can use the
following properties also to directly link SP2 and SP5 (see Figure 3):

● geosparql:hasDefaultGeometry, which links an instance of class geosparql:Feature with its
default instance of class geosparql:Geometry. The default geometry is the geometry that should
be used for spatial calculations in the absence of a request for a specific geometry;

● geosparql:hasGeometry, which links an instance of class geosparql:Feature with an instance
of class geosparql:Geometry that represents its spatial extent;

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 26/119

Figure 3 Relation between CRMgeo and Geo SPARQL classes.

An instance of crmgeo:SP2_Phenomenal_Place is linked through the property
ecrm:P1_is_identified_by to an instance of class ecrm:E41_Appellation that provides a name for the
place in a natural language.

An instance of crmgeo:SP5_Geometric_Place_Expression is linked through the property
ecrm:Q9_is_expressed_in_term_of to an instance of class
crmgeo:SP4_Spatial_Coordinate_Reference_System that provides spatial coordinate reference
system that is used by the geometry.

An instance of crmgeo:SP4_Spatial_Coordinate_Reference_System is linked to an instance of
crmgeo:SP3_Reference_Space through property crmgeo:Q7_describes.

An instance of crmgeo:SP5_Geometric_Place_Expression is linked to its serialisation format through
the property geosparql:hasSerialization, which has two subproperties corresponding to two
different kinds of literal:

1. geosparql:asWKT, linking to a wktLiteral
2. geosparql:asGML, linking to a gmlLiteral

In the past, Latitude/Longitude coordinates in the WGS84 coordinate reference system have been
commonly used to encode geospatial data. However, the GeoSPARQL standard has intentionally opted
for a more adaptable approach by using various encoding formats that can accommodate different
coordinate reference systems and geometry shapes. Thus, in CrO it is possible to represent the latitude

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 27/119

and longitude of a geographic point as a WKT literal, e.g., the longitude and latitude of the city of Pisa (IT)
are represented as:

“<http://www.opengis.net/def/crs/OGC/1.3/CRS84> POINT (10.401 43.715)”^^geosparql:wktLiteral

The classes and properties reported above are shown in Figure 4.

Figure 4 The classes and properties used to represent geospatial knowledge.

2.3.7 Modelling time-varying properties

The representations built with the CrO ontology are diachronic, in the sense that they do not refer to only
one point in time; rather, these representations take into account the changes that may occur in the
represented reality by modelling those changes via events. However, to be usable CrO does not require
representing every change through one or more events.

This Section presents a method to model changes without using events. This method is well-known in
knowledge representation and is called 4D-fluents, based on the name given to time-changing properties
by the fathers of AI. A more elaborate exposition of the method can be found in [14].

The basic assumption of the method is that every entity can be thought of as a four-dimensionalfour-
dimension space-time worm whose temporal parts are slices of the worm. For instance, the island of Chios

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 28/119

was ruled by the Republic of Genoa from 1363 to 1566 and by the Ottoman Empire from 1566 to 1912; in
1912 Chios became part of Greece. We can then think of Chios as being an object constituted by at least
three slices:

● chios-1, the Chios dominated by the Republic of Genoa and existed from 1363 to 1566,
● chios-2, the Chios dominated by the Ottomans and existed from 1566 to 1912, and
● chios-3, the Chios included in the Greek Republic and existed from 1912 to date.

Figure 5 below shows how Chios and one of the above three slices (chios-2) can be modelled using the
CrO. Green arrows are all labelled by the rdf:type property (tin-2 is the interval of existence of chios-
2, having tp21 (i.e., the year 1566) and tp22 (i.e., the year 1912) as the starting and end point,
respectively).

Figure 5 Chios and its time-varying properties.

The class ecrm:E92_Spacetime_Volume has temporal slices of things (the Chios Island in this case) as
instances. These instances are related to the object representing Chios by property ecrm:P10i_contains,
which is the inverse property of ecrm:P10_falls_within, while their spatial and temporal regions are
linked via properties ecrm:P161_has_spatial_projection and
ecrm:P160_has_temporal_projection, respectively.

2.4 Modelling processes

2.4.1 Processes

A craft process is composed of steps. A step can be either an action performed by one or more agents, or
an event, that is something that happens without the direct intervention of the agents involved in the
craft; for example, the growth of a plant or the provision of a piece of material for the craft are events. To
support the modularisation of processes, we will also allow a step to be a whole process, which is to be

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 29/119

understood as a sub-process of the process where the step belongs. As customary, we will use two special
steps, the initial step and the final step, to properly represent the beginning and the end of processes.

Following standard practice, also adopted by the Unified Modelling Language (UML, for short) activities,
the steps in a process are interconnected by transitions. Consistently with UML, we will use the term
“transition tail” (or simply “tail”) for any step where the transition hyperedge originates and “transition
head” (or just “head”) for any step where the transition ends. Based on the experience gained in the
Mingei project, CRAEFT processes will use transitions of the following kinds:

● Simple, to directly connect one tail to one head;
● Decision, to represent decision points in processes; a decision has one tail and two or more heads,

each with an associated predicate;
● Merge, to represent the converging of several alternative paths in a single step; a merge has two

or more tails and one head;
● Fork, to represent the division of a flow into two or more parallel flows; a fork has one tail and

two or more heads;
● Join, to represent the converging of several parallel paths in a single step; a join has two or more

tails and one head.

Consequently, a process is represented as a directed hypergraph, whose nodes represent steps and whose
hyperedges represent transitions. Craft processes are deterministic, therefore the hypergraphs modelling
them satisfy the following conditions:

1. any step other than the final one is in the tail of just one transition, and
2. any step other than the initial one is in the head of just one transition.

The following figures give the graphical form of process elements.

Figure 2 Graphical elements of processes

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 30/119

2.4.2 Actions

Generally, the CrO views an action as an application of forces to some objects, performed by one or more
agents possibly with the aid of specific tools, resulting in transformations of the involved objects.
Sometimes the result of an action is one or more objects that did not exist before and are produced by
assembling one or more existing objects.

From an ontological point of view, actions are temporal entities called perdurants (for more details on

perdurants, see for instance [15]) performed by agents endowed with intentions. Generally, the intention of
the performer is a proposition giving the state of affairs that the performer aims to bring about by
executing the action. Based on the intention of the performer, we can distinguish correct actions as those
whose outcome reflects the intention of the performer, from the incorrect ones whose outcome does not
reflect the performer’s intention. An action can be incorrect, or fail, in many ways. For instance, the action
of inserting a chisel into a piece of wood may fail if the applied force is not sufficient for the chisel to
penetrate the wood, or if the applied force is excessive to break the chisel or the piece of wood. Unless
otherwise specified, actions are considered to be of the correct kind. Certain incorrect actions stem from
common mistakes of craft performers, thus the representation of those actions is as important as that of
correct actions to properly train a craft performer.

An action can also be uncertain, if (and only if) the intention of the action performer does not identify a
unique state of affairs. In more practical terms, the performed of an uncertain action has in mind several
potential outcomes, all of which are acceptable to them. For instance, considering again our previous
example, the performer may regard as acceptable any penetration of the chisel ranging from 2 to 5
millimetres, simply because the depth of the penetration depends on factors related to the particular
materials employed or to the circumstances in which the action is executed. Uncertain actions are very
relevant to the present purposes, as we observe that a great many, if not most actions involving physical
materials and dexterity do involve a certain amount of uncertainty.

Objects involved in actions have a certain number of characteristics that distinguish them from one
another. These characteristics can be usefully divided into two disjoint categories: time-independent and
time-dependent characteristics. The former are the characteristics that do not depend on time, such as
the identity of an object. In contrast, time-dependent characteristics may change over time, such as the
temperature, the position or the shape of an object. Amongst the time-independent characteristics, a
prominent role is played by the composition of an object, that is the relation of inherence that links an
object to other objects, called parts or components. In addition, we regard composition as time-
independent because an object is born composite and travels in time with the same components: if, at
any time, some components of an object are added or removed, a new object is obtained. In contrast, the
time-dependent characteristics of an object may vary without changing the identity of the object.
Collectively, the time-dependent characteristics of an object form the object state.

One important requirement set by the CRAEFT project is that the KB containing knowledge about crafts
must act as a diachronic representation of those crafts, that is, it must keep track of the craft process as it
develops in time so that it is always possible to reconstruct the stages through which the process has
evolved. In more practical terms, object states resulting from any actions must not replace the states of
the same objects before that action; instead, old and new states must be simultaneously represented in
the KB, each state linked with the information that permits to correctly determine the role played by the
state in the context of a craft.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 31/119

Based on these considerations, an action is modelled as a complex entity consisting of the following main
parts:

● The agents that act, called the performers;
● the entities that cause the action, called causing entities, and the duration of the application of

the causing entities;
● the objects involved in the action called the affected objects, whose states are changed as a result

of the action;
● if any, the objects created by the action; these are the objects whose existence is a product of the

action. Created objects may be composite, in this case, their components are amongst the
affected objects, or they may be simple if the action just decomposes or breaks one affected
object;

● the action function, that is the function that connects the input of the action to its output. In
particular, an action function takes as input the causing entities and the initial states of the
affected entities and produces as output the final states of the affected entities and the
compositions and states of the created entities;

● the time when and the place where the action is performed.

As an example, the action of inserting a chisel into a piece of wood by hitting it with a hammer consists
of:

● the person driving the hammer as a performer;
● the place and the time of the action;
● the force with which the hammer is driven (which implies the duration), as causing entities;
● the hammer, the chisel, and the piece of wood as affected objects; the action changes the position

of all these objects and may change their shape;
● the piece of wood with the chisel inserted in it is the created object;
● the action function associates the force and the initial state of the involved entities (hammer,

chisel and piece of wood) to the final states of these entities and the composition of the created
object.

Causing entities are typically perdurants, as they develop in time, while affected objects are typically
endurants which may be created or destroyed by an action, or which can change their states as the result
of an action.

Notice that the above conceptualisation is simply the vision of action from a craft point of view, based on
the principles of mechanics but ultimately tailored to the requirements set by the project on the
representative craft instances. Thus,

● the causing entities in an action do not include all world objects that may in any way exert a causal
role in the action, but only those entities whose causal role is relevant concerning the modelling
of the craft at hand;

● the affected objects in an action do not include all world entities that may in any way be altered
by the action, but only those entities whose participation in the action is relevant concerning the
modelling of the craft at hand;

● the representation of an object in terms of composition and state is not expected to provide a
complete model of the object but simply reflects the requirements of the project as to object
representation.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 32/119

As mentioned above, in the context of a craft process an event is something that happens without the
direct intervention of the agents involved in the craft. Consequently, the representation of events is much
simpler than that of actions, only consisting of the amount of time that an event takes to occur. Other
features of events, specific to the kind of event occurring in a process, have an accidental nature and are
not part of the general characterisation provided here.

For reasons that will be clarified later below, we need to consider another kind of action, which will be
called virtual actions. A virtual action is a mathematical model, built analytically by considering the forces
and the properties of the objects involved in the action to the end of computing the effects of the action
in a theoretical way, like, e.g., an engineer would do upon designing some artefact. To distinguish virtual
actions from the actions we know from everyday experience, we will use the term real actions for the
latter. The virtual actions that we will be considering in the present context will be simulations, performed
by the SIMULIA Abaqus software. SIMULIA Abaqus is a suite of software applications for finite element
analysis (FEA) and computer-aided engineering (CAE). Developed by Dassault Systèmes, Abaqus is widely
used for engineering simulations, including stress analysis, heat transfer, and fluid dynamics. Abaqus is
commonly used in aerospace, automotive, energy, and biomedical engineering industries to design, test,
and optimise products and processes through virtual prototyping and simulation.

A virtual action is structured in the same way as a real action, but the involved entities are different. In
particular,

● the action function of a virtual action is the function realised by the simulation, called the
simulation function;

● the causing, the affected and, if any, the created entities of a virtual action are mathematical
models which will be termed “virtual” to distinguish them from their real counterparts; in
particular, virtual actions are caused by virtual entities and affect virtual objects. A virtual object
is therefore a mathematical model of a real object, providing the information needed by the
simulator to simulate the use of the object.

In the same way, actions can be simulated by virtual actions, events can be simulated by virtual events
and transitions can be simulated by virtual transitions. A virtual process is a process solely consisting of
virtual events, actions or sub-processes, connected by virtual transitions.

2.4.3 Schemas

In general, a schema of a phenomenon is a description that captures the salient aspects of that
phenomenon for a specific class of applications. Any occurrence of that phenomenon is said to be an
instance of the schema and provides specific values for the aspects encompassed in their corresponding
schema. Schemas are created for descriptive and prescriptive reasons:

● from a descriptive point of view, schemas are representations that help understand phenomena
in a general sense, before and independently from specific occurrences;

● from a prescriptive point of view, schemas help keep an information system under control, by
providing templates to which instances must adhere.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 33/119

In CRAEFT, schemas are introduced for both kinds of reasons. Descriptively, they provide general
representations of crafts that highlight the main steps and their inter-relations, so that information
consumers can familiarise themselves with crafts following a top-down approach; prescriptively, they
allow managing the creation, storage and access of the representative craft instances, providing strong
constraints on how these crafts are organised and structured.

Craft process schemas are no exceptions: they are formal representations that capture the salient aspects
of processes for the CRAEFT project, as they have been identified above. Schemas are, introduced in
CRAEFT for both kinds of reasons: descriptively, they provide general representations of crafts that
highlight the main steps and their inter-relations, so that information consumers can familiarise
themselves with crafts following a top-down approach; prescriptively, they allow managing the creation,
storage and access of the representative craft instances, providing strong constraints on how these crafts
are organised and structured.

A process schema is a directed hypergraph composed of step schemas and transition schemas. In
particular,

● a step schema can be an action, an event or a (sub)process schema;
● a transition schema describes the conditions that control the flow of execution of instances of the

process. There a different types of transition schema for each type of transition: simple transition
schema, decision transition schema, merge transition schema, fork transition schema and join
transition schema.

More specifically, an action schema describes the action function along with entities involved in the
action, each with its role. Agents in schemas are represented by roles, which give the kinds of individuals
acting. There are many possible languages for describing an action function, for instance as a set of
mathematical equations, giving the evolution in space and time of the entities involved in the action.
Given the nature of the actions dealt with by the CRAEFT project, the CRO uses two languages for
describing actions: for real actions, it uses the natural language encoding the narrations of the craft
practitioners, including not only the words of these persons but also their gestures as recorded in media
objects; for virtual actions, it uses the language used by the SIMULIA Abaqus simulation tool, that is, the
language of mathematics. It follows that agents of human actions are persons, while the agent of any
virtual action is the SIMULIA Abaqus simulation tool.

Action schemas are instantiated by virtual actions, as the latter provides an abstract, mathematical
execution of an action. Each virtual action encodes an application of the simulation code given by the
schema, providing the input parameters identifying the application and recording the output parameters
resulting from the application. Following the representation of the action given above, the input
parameters of a virtual action are the (mathematical representations of the) causing entities and of the
initial states of the affected objects; output parameters are the (mathematical representations of the)
final states of the affected objects and the state of the created objects, if any. Instantiation is a one-to-
many relation: an action schema can be instantiated by any number of virtual actions, each determined
by a different set of input parameters. There cannot be two virtual actions that are instances of the same
action schema and have the same input parameters but different output parameters. Conversely, each
virtual action is an instance of exactly one schema.

Real actions are enacted by human agents that perform them in a real setting, that is, as real
transformations to real objects, at a given place and at a given time. Enactment requires that the enacting

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 34/119

real action strictly mirrors the enacted virtual action, providing accurate realisations of the
representations that make up the virtual action. Also, enactment is a one-to-many relation: A virtual
action can be enacted any number of times, each performed by an agent and situated in its spatiotemporal
region, different from the spatiotemporal region of all other actions. Conversely, each real action is an
enactment of exactly one virtual action. Notice that, as there cannot be two virtual action instances of the
same schema with the same input parameters, there cannot be two enactments of the same virtual
actions within the same spatio-temporal region. Fortunately, this condition is enforced by nature.

The same instantiation/enactment structure applies to process schemas: by instantiating all action and
transition schemas in a process schema, a virtual process is obtained, which can then be enacted by a real
process. In sum,

● process schemas are composed of step and transition schemas and are instantiated into virtual
processes, composed of virtual steps and virtual transitions, which are instances of the
corresponding schemas;

● virtual processes are composed of virtual steps and virtual transitions and are enacted into
processes, composed of steps and transitions, which are enactments of the corresponding virtual
steps and virtual transitions, respectively.

The following diagram illustrates graphically the notions introduced so far: the blue lines going down from
the topmost entities represent decomposition; green arrows represent instantiation; and finally, red
arrows represent enactment.

The following diagram illustrates the notions introduced so far.

2.4.3.1 Theoretical considerations on process schemas

The process model introduced thus far allows the representation of “odd” process schemas, that is
schemas which hardly make any sense from an application point of view or that exhibit evident anomalies.
These odd schemas stem from an improper usage of fork and join transitions, either alone or in
combination with other kinds of transitions. A few examples (see Figure below) will suffice to illustrate
some basic cases, from which more complex cases can be derived by composition.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 35/119

The schema on the left exhibits a simple transition that crosses the boundary of a fork-join pair, giving
raise to a virtual process that expands indefinitely. The schema in the centre shows a similar situation,
with a simple transition that crosses the boundary of a fork leading directly to the matching join transition.
This schema can be re-written into an equivalent one that does not present this anomaly, since the
instantiation of the decision transition before the fork produces a simple transition that either leads to
the fork (“yes” branch) or leads to a step outside the fork (“no” branch) and which does not need to be
synchronised with anything. Finally, in the schema on the right two parallel flows merge before being
synchronised, which violates the basic semantics of merge transitions which cannot combine parallel
threads. This schema too can be rewritten to avoid the anomaly. By combining these basic cases, and
more odd cases, a large subset of meaningless schemas can be obtained.

In principle, the subset of odd schemas should be mathematically characterised accurately, to make sure
that only “good” schemas are allowed by the CRAEFT Authoring Platform. However, this is not necessary
in the present context. The reason is that the schemas that the CRAEFT project develops and that are
going to be stored on the CRAEFT Authoring Platform are all derived bottom-up from descriptions of the
experts and documented by real processes, representing real craft instances. Thus, there is no possibility
that this approach leads to the definition of odd schemas such as the ones shown above.

2.5 An ontology of processes and actions

This Section presents the part of the CRO ontology concerning processes and actions, axiomatising the
conceptualisation given in the previous Section. The Section is organised as follows. First, generalised
properties are introduced in Section Generalised properties, then the ontology proper is given, starting
from activity schemas (Section Activity Schemas), which inform the other concepts and relations of the
ontology, and then moving to activities (Sections from Activities to Enactment), and transitions (Section
Transitions).

Generalised properties

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 36/119

From a methodological point of view and for reasons of clarity and economy, the ontology relies as much
as possible on Generalised Properties (GPs, for short). A GP is an OWL 2 DL object property that represents
a single domain relation that applies to several classes, having a different range for each such class. For
example, a composition relation in the mechanical domain may apply to several kinds of machines, having
a different component type for each type of machine it applies to. Some ontology languages, such as RDF
Schema, are not powerful enough to allow a knowledge engineer to represent this fact, leaving no choice
but to define one different property for each class of application. This causes a significant loss in the
semantic quality of the ontology, as these different properties all stand for the same relation. Indeed, the
proliferation of unnecessary properties increases the complexity of using and managing the ontology. The
damage can be partially remedied by making these properties sub-properties of a special property that
stands for the relation. However, such a remedy can only be applied if the domains of the sub-properties
are subclasses of a single class and the same for the ranges. But this is not always the case, and the
proliferation problem remains anyway. In short, GPs reduce the number of properties of the ontology to
those that are strictly necessary to capture the relations underlying the conceptualisation.

GPs are axiomatised in OWL 2 DL according to a specific pattern, named the GP pattern, consisting of the
following axioms. Let us assume that the GP applies to the classes C1, C2, …, Cn, and when applied to class
Ci, the GP has class Ri as range. Then the axioms are as follows:

● One axiom declares the GP as an object property.
● One axiom declaring the inverse of GP as an object property.
● One axiom asserts that the domain of the GP is class C, where C is the most specialised class that

generalises classes C1, C2, …, and Cn. In the worst case, C equals owl:Thing, which is to say that the
domain of the GP is the whole universe; but in any other case, the definition of the domain by a
specific class helps circumscribing the applicability of the GP, which is desirable.

● One axiom asserts that the range of the GP is class R, where R is the most specialised class that
generalises classes R1, R2, …, and Rn. The considerations done above on the existence of C apply
also to R.

● n axioms asserting that the range of the GP when applied to class Ci is class Di and n axioms for
the converse. These 2n axioms are usually called localisation axioms.

For convenience, these axioms will be given for each GP introduced in what follows.

2.5.1 Activity Schemas

ActivitySchema is the most general class having schemas as instances. Following the structure of
hypergraphs, ActivitySchema is the disjoint union of two classes: StepSchema and TransitionSchema,
the former having nodes of process schemas’ hypergraphs as instances and the latter having hyperedges
of process schemas’ hypergraphs as instances. Each of these subclasses is further specialised based on the
kinds of steps and transitions that can be found in a process hypergraph. Thus, StepSchema is the disjoint
union of three classes:

● EventSchema, having schemas of events as instances;

● ActionSchema, having schemas of actions as instances;

● ProcessSchema, having schemas of processes as instances.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 37/119

TransitionSchema is the disjoint union of five classes, corresponding to the different types of transitions
included in the conceptualisation:

● SimpleTransitionSchema,

● DecisionTransitionSchema,

● MergeTransitionSchema,

● ForkTransitionSchema and

● JoinTransitionSchema.

The fact that ProcessSchema is a subclass of StepSchema allows us to include process schemas as steps
of other process schemas, giving them the status of sub-processes. This applies to any process schema,
even those which are not included in other process schemas; any process schema is therefore “ready” to
become a step in another process schema.

Following the UML standard, every process is enclosed between a start and an end node. In the CrO vision
of processes, these nodes are events, as they do not include any action. Accordingly, the CRO defines the
disjoint classes ProcessStartSchema and ProcessEndSchema as subclasses of EventSchema, having as
instances the descriptions of start and end nodes.

Schemas are kinds of plans, that is, descriptions of structured objects, whether these objects are steps or
transitions. The CIDOC CRM offers the class ecrm:E29_Design_or_Procedure that “comprises
documented plans for the execution of actions to achieve a result of a specific quality, form or contents. In
particular, it comprises plans for deliberate human activities that may result in new instances of E71
Human-Made Thing or for shaping or guiding the execution of an instance of E7 Activity”. All the above
schemas satisfy this description, therefore class ActivitySchema is a subclass of
ecrm:E29_Design_or_Procedure and so are by consequence all schema classes introduced so far.

ActivitySchema is a class

ActivitySchema is a subclass of ecrm:E29_Design_or_Procedure

StepSchema is a class

EventSchema is a class

ProcessStartSchema is a class

ProcessStartSchema is a subclass of EventSchema

ProcessEndSchema is a class

ProcessEndSchema is a subclass of EventSchema

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 38/119

ProcessStartSchema is disjoint from ProcessEndSchema

ActionSchema is a class

ProcessSchema is a class

StepSchema is the disjoint union of EventSchema, ActionSchema and ProcessSchema

TransitionSchema is a class

SimpleTransitionSchema is a class

DecisionTransitionSchema is a class

MergeTransitionSchema is a class

ForkTransitionSchema is a class

JoinTransitionSchema is a class

TransitionSchema is the disjoint union of SimpleTransitionSchema, DecisionTransitionSchema,
MergeTransitionSchema, ForkTransitionSchema, and JoinTransitionSchema

ActivitySchema is the disjoint union of StepSchema and TransitionSchema

To capture the composition relation of processes, the CrO introduces the property hasProcessStart,
connecting a process schema to its start event step schema. Once the connection with the starting step is
established, the structure of the process is fully determined by using transitions to individuate all the
remaining steps of the process. For convenience, the inverse property of hasProcessStart,
isProcessStartOf, is also introduced. For economy and conceptual homogeneity, hasProcessStart is
also used for the composition of virtual and real processes, therefore hasProcessStart and
isProcessStartOf are GPs. Since these properties apply to both schemas, instances of
ecrm:E29_Design_or_Procedure and to fabulae, instances of ecrm:E4_Activity, their domain is the
most specialised class that generalises both, that is, ecrm:E1_CRM_Entity. No mapping of
hasProcessStart to a property of CRM is possible, as the CRM introduces, amongst others, two
properties for part-whole relationships:

● ecrm:P69_has_association_with, for part-whole relationships between instances of
ecrm:E29_Design_or_Procedure;

● ecrm:P5_consists_of for part-whole relationships between instances of
ecrm:E3_Condition_State.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 39/119

We should therefore make both hasProcessStart sub-property of a disjunction of two CRM properties.
However, this is not supported by OWL 2 DL, which only provides object and data properties as property
expressions. Despite this inconvenience, which applies also to the properties for the composition of
transitions (see Section Transitions), the CrO prefers to use a single property.

hasProcessStart is an object property

The domain of hasProcessStart is class ecrm:E1_CRM_Entity

The range of hasProcessStart is class ecrm:E1_CRM_Entity

isProcessStartOf is an object property

isProcessStartOf is inverse property of hasProcessStart

The axioms given next complete the definition of the GPs hasProcessStart and isProcessStartOf, and
provide the obvious cardinality relation: a process schema always connects to exactly one start process
schema and vice-versa.

An instance of ProcessSchema is connected by hasProcessStart only to instances of
ProcessStartSchema

An instance of ProcessSchema is connected by hasProcessStart to exactly one instance of
ProcessStartSchema

An instance of ProcessStartSchema is connected by isProcessStartOf only to instances of
ProcessSchema

An instance of ProcessStartSchema is connected by isProcessStartOf to exactly one instance of
ProcessSchema

For supporting the automation of instantiation, the ontology defines a property hasProcessEndSchema,
associating a process schema with its process-end event schema. The values of the property can be
computed by visiting a process schema, however, the computation cannot be performed axiomatically,
thus the property needs to be explicitly defined to hold the values. The property is one-to-one and has no
corresponding property in the CRM. The property is solely used for process schemas, thus it is not a GP.

hasProcessEndSchema is an object property

The domain of hasProcessEndSchema is class ProcessSchema

The range of hasProcessEndSchema is class ProcessEndSchema

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 40/119

An instance of ProcessSchema is connected by hasProcessEndSchema to exactly one instance of
ProcessEndSchema

An instance of ProcessEndSchema is connected by the inverse of hasProcessEndSchema to exactly one
instance of ProcessSchema

One important property of activities is their planned duration, which fixes the amount of time that must
be used to execute them. For this purpose, the ontology defines property duration and sets its domain
as ActivitySchema, so that the appropriate value can be to step or transition schemas. duration is a
sub-property of the CRM property ecrm:P43_has_dimension, whose domain is class ecrm:E70_Thing, a
superclass of ecrm:E29_Design_or_Procedure and therefore of all schema classes, and whose range is
the CRM class ecrm:E54_Dimension, also the range of duration.

duration is an object property

duration is a sub-property of ecrm:P43_has_dimension

The domain of duration is class ActivitySchema

The range of duration is class ecrm:E54_Dimension

Graphically:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 41/119

2.5.1.1 Activities

From a narratological point of view, processes are fabulae, since they are complex activities that form
meaningful wholes, worth to be narrated because they lead to the production of relevant items. Craft
processes, in particular, are very worth to be narrated because they embody important aspects of human
nature and of the way humans relate to matter: the narration of craft processes is the very reason for the
existence of the CRAEFT project. To axiomatise processes, we need to distinguish between the fabulae of
virtual processes and those of real processes, and consequently between the narratives about virtual
processes and those of real processes. We will start the axiomatisation of processes from this distinction
and introduce the class of CraftNarrative, having as instances the narratives of craft processes, and two
disjoint subclasses of it: VirtualNarrative and RealNarrative, the former for virtual processes and the
latter for real ones. Similarly, we introduce the class CraftFabula, having as instances all craft processes,
and two disjoint subclasses of its: VirtualFabula and RealFabula, the former for virtual processes and
the latter for real ones.

CraftNarrative is a class

CraftNarrative is a subclass of narr:Narrative

VirtualNarrative is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 42/119

VirtualNarrative is a subclass of CraftNarrative

RealNarrative is a class

RealNarrative is a subclass of CraftNarrative

RealNarrative is disjoint from VirtualNarrative

CraftFabula is a class

CraftFabula is a subclass of narr:Fabula

VirtualFabula is a class

VirtualFabula is a subclass of CraftFabula

RealFabula is a class

RealFabula is a subclass of CraftFabula

RealFabula is disjoint from VirtualFabula

It follows that property narr:hasFabula, connecting an instance of class narr:Narrative to its instance
of class narr:Fabula, becomes a GP, whose localisation axioms are given next. These axioms are not
given for classes CraftNarrative and CraftFabula, which are abstract and are not meant to be directly
instantiated but are defined solely to circumscribe their subclasses to the craft domain.

An instance of VirtualNarrative is connected by narr:hasFabula only to instances of
VirtualFabula

An instance of VirtualFabula is connected by narr:isFabulaOf only to instances of class
VirtualNarrative

An instance of RealNarrative is connected by narr:hasFabula only to instances of RealFabula

An instance of RealFabula is connected by narr:isFabulaOf only to instances of class RealNarrative

Graphically:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 43/119

Activity is the most general activity class in crafts. For the reasons just given, Activity is a subclass of
CraftFabula. Activity is specialised in two main classes: VirtualActivity, including all activities in
virtual processes, and RealActivity, including all activities in real processes. Notice VirtualActivity is
a subclass VirtualFabula, while RealActivity is a subclass RealFabula; disjointness of real from virtual
fabulae implies that between real and virtual activities.

Following the structure already followed for schemas, Activity is the disjoint union of Step, the class of
steps, and Transition, the class of transitions. Each of these is further specialised into the class of the
corresponding virtual and real entities, so Step is specialised into VirtualStep and RealStep, while
Transition is specialised into VirtualTransition and RealTransition. These pairs of classes are
disjoint as a consequence of the disjointness of VirtualActivity and RealActivity. Each of these four
classes is further refined following the structure seen in the previous Section. For instance, RealStep is
the disjoint union of three classes: RealAction, RealEvent and RealProcess. We recall that decision and
merge transition schemas are instantiated as simple virtual transitions, therefore there are neither virtual
nor real merge or decision transitions.

Activity is a class

Activity is a subclass of CraftFabula

VirtualActivity is a class

VirtualActivity is a subclass of Activity

VirtualActivity is a subclass of VirtualFabula

RealActivity is a class

RealActivity is a subclass of Activity

RealActivity is a subclass of RealFabula

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 44/119

Step is a class

Transition is a class

Activity is the disjoint union of Step and Transition

VirtualStep is a class

VirtualStep is a subclass of Step

VirtualStep is a subclass of VirtualActivity

RealStep is a class

RealStep is a subclass of Step

RealStep is a subclass of RealActivity

VirtualEvent is a class

VirtualProcessStart is a class

VirtualProcessStart is a subclass of VirtualEvent

VirtualProcessEnd is a class

VirtualProcessEnd is a subclass of VirtualEvent

VirtualProcessEnd is disjoint from VirtualProcessStart

VirtualAction is a class

VirtualProcess is a class

VirtualStep is the disjoint union of VirtualEvent, VirtualAction and VirtualProcess

RealEvent is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 45/119

RealProcessStart is a class

RealProcessStart is a subclass of VirtualEvent

RealProcessEnd is a class

RealProcessEnd is a subclass of VirtualEvent

RealAction is a class

RealProcess is a class

RealStep is the disjoint union of RealEvent, RealAction and RealProcess

VirtualTransition is a class

VirtualTransition is a subclass of Transition

VirtualTransition is a subclass of VirtualActivity

RealTransition is a class

RealTransition is a subclass of Transition

RealTransition is a subclass of RealActivity

VirtualSimpleTransition is a class

VirtualForkTransition is a class

VirtualJoinTransition is a class

VirtualTransition is the disjoint union of VirtualSimpleTransition, VirtualForkTransition
and VirtualJoinTransition

RealSimpleTransition is a class

RealForkTransition is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 46/119

RealJoinTransition is a class

RealTransition is the disjoint union of RealSimpleTransition, RealForkTransition and
RealJoinTransition

Graphically (coloured boxes contain classes already introduced):

We now complete the axiomatisation of GPs A and B by giving the remaining localisation axioms, along
with the corresponding cardinality axioms.

An instance of VirtualProcess is connected by hasProcessStart only to instances of
VirtualProcessStart

An instance of VirtualProcess is connected by hasProcessStart to exactly one instance of
VirtualProcessStart

An instance of VirtualProcessStart is connected by isProcessStartOf only to instances of
VirtualProcess

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 47/119

An instance of VirtualProcessStart is connected by isProcessStartOf to exactly one instance of
VirtualProcess

An instance of RealProcess is connected by hasProcessStart only to instances of RealProcessStart

An instance of RealProcess is connected by hasProcessStart to exactly one instance of
RealProcessStart

An instance of RealProcessStart is connected by isProcessStartOf only to instances of
RealProcess

An instance of RealProcessStart is connected by isProcessStartOf to exactly one instance of
RealProcess

2.5.1.2 Step Schemas

This Section analyses schemas of steps, to the end of formalising the conceptualisation given above. We
recall that a step can be an action, an event or a process. Since processes are formed by actions and events,
their features will automatically result from those of their constituents and can be obtained via the
appropriate queries. Moreover, since events are simpler kinds of actions, their representation is a
simplification of that of actions. In what follows, then, we will focus on the representation of
actions, indicating whether each analysed feature applies to events too.

An action is typed in three different ways:

● By a function in a standardised vocabulary of functions; the vocabulary is captured by class
ActionFunction, subclass of ecrm:E55_Type; these individuals are linked to the action by using
the property hasActionFunction, ranging over the action function class.

● By one of the following action types: Add, Subtract, Interlock, Transform. Each of these types is
represented by an individual, instance of class ActionType that is a subclass of ecrm:E55_Type;
these individuals are linked to the action by using the property hasActionType, ranging over the
action type class.

● By one or more of the six Archimedean simple machines (e.g. Lever, Wheel and axle, Pulley,
Inclined plane, Wedge, Screw) or a physical or chemical agent using the property
hasMachineType. The Archimedean simple machines are individuals, instances of the class
MachineType that is a subclass of ecrm:E55_Type.

These properties are all sub-properties of ecrm:P2_has_type. They do not apply to events and have the
same value for all virtual actions that are instances of the same action schema and for all real actions that
enact these virtual actions; for this reason, they are associated with action schemas and are not replicated
in virtual and real actions. Therefore they all have ActionSchema as their domain.

ActionFunction is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 48/119

ActionFunction is a subclass of ecrm:E55_Type

eafunction1 is an instance of class ActionFunction

…

eafunctionN is an instance of class ActionFunction

hasActionFunction is an object property

hasActionFunction is a subproperty of ecrm:P2_has_type

The domain of hasActionFunction is class ActionSchema

The range of hasActionFunction is class ActionFunction

ActionType is a class

ActionType is a subclass of ecrm:E55_Type

add is an instance of class ActionType

subtract is an instance of class ActionType

interlock is an instance of class ActionType

transform is an instance of class ActionType

hasActionType is an object property

hasActionType is a subproperty of ecrm:P2_has_type

The domain of hasActionType is class ActionSchema

The range of hasActionType is class ActionType

MachineType is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 49/119

MachineType is a subclass of ecrm:E55_Type

LeverMachineType is an instance of class MachineType

WedgeMachineType is an instance of class MachineType

ScrewMachineType is an instance of class MachineType

InclinedPlanMachineType is an instance of class MachineType

PulleyMachineType is an instance of class MachineType

WheelAxleMachineType is an instance of class MachineType

PhysicalAgent is an instance of class MachineType

ChemicalAgent is an instance of class MachineType

hasMachineType is an object property

hasMachineType is a subproperty of ecrm:P2_has_type

The domain of hasMachineType is class ActionSchema

The range of hasMachineType is class MachineType

Graphically:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 50/119

Generalised Property Schemas

An action schema specifies the causing entities and the affected objects of the action by giving the
properties that must be used to associate virtual actions that instantiate the schema to the involved virtual
causing entities and virtual affected objects, and real actions that are enactments of those virtual actions
to the involved real causing entities and real affected objects. These properties are specified via a special
class, called GPSchema, each instance of which provides all required information about a GP. Since class
GPSchema is used extensively in action schemas, we start by introducing it.

An instance of class GPSchema provides the following information about a property:each instance of which
provides the following kinds of information:

1. the property itself, that is the symbol of the vocabulary used for the property. This information is
provided by property ofProperty, having GPSchema as domain and rdf:Property as range, and
being mandatory and functional;

2. the cardinality of the property, i.e., how many entities of the same type the property connects.
This information is provided by data property hasCardinality, having GPSchema as domain and
xsd:int as range, also mandatory and functional;

3. the domain of the property, provided by object property hasDomain, having GPSchema as domain
and owl:Class as range, also mandatory and functional;

4. the range of the property, provided by object property hasRange, having GPSchema as domain
and owl:Class as range, also mandatory and functional;

5. the applicability of the property, i.e., to which classes the property applies and, for each such
classes, which classes the properties range over. This information is provided by property
hasApplicability, having GPSchema as domain and class Applicability as range, mandatory
and having at-least one as cardinality reflecting the fact that class GPSchema is used for the
specification of GPs. in turn, every instance of Applicability provides a domain (via property
domainOfApplicability) and a range (rangeOfApplicability). Both properties
domainOfApplicability and rangeOfApplicability have owl:Class as domain and range,
and are mandatory and functional. Any instance of Applicability must conform to the domain
and range of the GP: thus, the class given as domainOfApplicability must be a subclass of the
domain of the GP, given by property hasDomain; and the class given as rangeOfApplicability
must be a subclass of the range of the GP, given by property hasRange.

Notice that all the information carried by an instance of GPSchema can be expressed using OWL 2 DL
axioms. For instance, to express the fact that actions instances of class C have exactly two causing entities
of type E, the axiom

SubClassOf(C ObjectExactCardinality(2 P E))

can be used, where P is the property for causing entities of type E. However, the cardinality information
(2, in this case) embedded in this axiom cannot be recovered, i.e., it is not possible to write a SPARQL
query that returns that information. Now, this information is needed by the instantiation algorithm and
for this reason, GPSchema must be used.

GPSchema is a subclass of ecrm:E73_Information_Object.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 51/119

GPSchema is a class

GPSchema is a subclass of ecrm:E73_Information_Object

ofProperty is an object property

The domain of ofProperty is class GPSchema

The range of ofProperty is class rdf:Property

An instance of GPSchema is connected by ofProperty to exactly one instance of class rdf:Property

hasCardinality is a data property

The domain of hasCardinality is class GPSchema

The range of hasCardinality is data range xsd:short

An instance of GPSchema is connected by hasCardinality to exactly one instance of data range
xsd:short

hasDomain is a data property

The domain of hasDomain is class GPSchema

The range of hasDomain is is class owl:Class

An instance of GPSchema is connected by hasDomain to exactly one instance of class owl:Class

hasRange is a data property

The domain of hasRange is class GPSchema

The range of hasRange is class owl:Class

An instance of hasRange is connected by hasRange to exactly one instance of class owl:Class

GPApplicability is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 52/119

GPApplicability is a subclass of ecrm:E73_Information_Object

hasApplicability is an object property

The domain of hasApplicability is class GPSchema

The range of hasApplicability is class GPApplicability

An instance of GPSchema is connected by hasApplicability to at least one instance of class
GPApplicability

domainOfApplicability is an object property

The domain of domainOfApplicability is class GPApplicability

The range of domainOfApplicability is class owl:Class

An instance of GPApplicability is connected by domainOfApplicability to exactly one instance of
class owl:Class

rangeOfApplicability is an object property

The domain of rangeOfApplicability is class GPApplicability

The range of rangeOfApplicability is class owl:Class

An instance of GPApplicability is connected by rangeOfApplicability to exactly one instance of
class owl:Class

Action Schemas

Let us now turn back to action schemas and to the representation of their causing and affected entities
using the machinery just introduced.

Property hasCausingEntityProperty connects any action schema to the properties, called causing
entity properties (CEPs), giving the causing entities of the virtual actions instantiating the schema and of
the real actions enacting them. Events have no causing entities, therefore property
hasCausingEntityProperty has ActionSchema as domain, while its range is class GPSchema, discussed
above. Every CEP is a sub-property of the CRM property ecrm:P15_was_influenced_by, which “captures
the relationship between an instance of E7 Activity and anything, that is, an instance of E1 CRM Entity that
may have had some bearing upon it”. Since an action has at least one causing entity, property
hasCausingEntityProperty is mandatory.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 53/119

For instance, let us consider the action of hitting a chisel with a hammer, having just one causing entity,
namely the force driving the hammer. Then, any virtual action must have one property, say CEP hasForce,
connecting the action to a virtual force driving the hammer; similarly, any action that enacts that virtual
action must be linked by property hasForce to a real force driving the hammer. To specify that, the
schema of the action, let it be named as1, is connected by hasCausingEntityProperty to one instance
of GPSchema, let it be named gp1, describing the CEP hasForce as follows:

1. gp1 is linked by property ofProperty to property hasForce;

2. gp1 is linked by data property hasCardinality to the positive integer 1;

3. gp1 is linked by data property hasDomain to the class narr:Fabula;

4. gp1 is linked by data property hasRange to the class CausingEntity for the reasons explained in
Section 3.3.4.1 Representing causing entities below;

5. gp1 is linked by property hasApplicability to two instances of class Applicability, app1 and
app2 as follows:

a. app1 is linked by property domainOfApplicability to class VirtualAction and by
property rangeOfApplicability to class VirtualForce;

b. app2 is linked by property domainOfApplicability to class RealAction and by property
rangeOfApplicability to class RealForce.

In English, the above statements read as “the action schema as1 has one causing entity property named
hasForce, having narr:Fabula as domain and CausingEntity as range, and connecting any instance of
the schema to exactly one instance of VirtualForce and any real action that enacts an instance of the
schema to exactly one instance of RealForce”. Notice that this statement can be directly expressed as a
set OWL 2 DL axioms as follows:

1. as1 is linked by property hasCausingEntityProperty to property hasForce;

2. every instance of schema as1 is connected by hasForce only to instances of VirtualForce;

3. every instance of schema as1 is connected by hasForce to exactly one instance of VirtualForce;

4. every enactment of any instance of schema as1 is connected by hasForce only to instances of
RealForce;

5. every enactment of any instance of schema as1 is connected by hasForce to exactly one instance
of RealForce;

6. the domain of hasForce is class narr:Fabula;

7. the range of hasForce is class CausingEntity.

In practice, an instance of class GPSchema reifies the above set of OWL 2 DL axioms by using a set of
properties to carry all the information needed to express those axioms. For this reason, we will call the
former modelling style the reified approach and the latter the direct approach. The advantage of the
reified approach is practical: it provides direct access to the information encoded in a GPSchema instance,
such as the cardinality of a CEP property, which is not possible to recover from the axioms used by the
direct approach; on the other hand, the reified approach does not allow using consistency checking for
maintaining the integrity of an ontology, as it omits the specification of the OWL 2 DL axioms that express
the basic facts for a CEP. The situation is reversed for the direct approach. To have the advantages of both
approaches, we adopt both of them using class GPSchema to describe a CEP while including the equivalent
OWL 2 DL axioms in a craft ontology. This presents a potential consistency issue, as the two specifications
must be coherent with one another. To mitigate this problem, wherever possible redundancy will be

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 54/119

avoided; in practice, properties hasDomain, hasRange and hasApplicability will be used as little as
possible and direct axioms will be used in their place. Also, user interface techniques will be used to
control this issue as much as possible.

Similarly, property hasAffectedEntityProperty is used for indicating the properties giving the entities
affected by the action. Such entities are further categorised along two orthogonal dimensions: the
rigid/deformable and the stable/mobile dimensions. As a consequence, hasAffectedEntityProperty
has four sub-properties, each capturing a combination of the two dimensions:

● the hasAffectedRigidStableEntityProperty property, for the rigid and stable entities;
● the hasAffectedRigidMovableEntityProperty property, for the rigid and movable entities;
● the hasAffectedDeformableStableEntityProperty property, for the deformable and stable

entities;
● the hasAffectedDeformableMovableEntityProperty property, for the deformable and

movable entities.

Each of these properties connects any action schema to the properties, called affected entity properties
(AEPs), giving the affected entities the virtual actions instantiating the schema and the real actions
enacting them. Events can have affected entities, therefore each property has StepSchema as a domain,
while its range is class GPSchema. Every AEP is a sub-property of the CRM property
ecrm:P12_occurred_in_the_presence_of, which “describes the active or passive presence of an E77
Persistent Item in an instance of E5 Event without implying any specific role”.

For instance, the action of hitting a piece of metal with a hammer has three affected entities: the hammer
and the chisel, both rigid and movable; and the piece of wood, deformable and stable. As a consequence,
the corresponding action schema has two GP schemas associated with it by the
hasAffectedRigidMovableEntityProperty property, one defining property hasHammer and the other
defining property hasChisel, and one GP schema associated with it by the
hasAffectedDeformableStableEntityProperty property, defining property hasPieceOfWood.

Graphically:

hasCausingEntityProperty is an object property

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 55/119

The domain of hasCausingEntityProperty is class ActionSchema

The range of hasCausingEntityProperty is class GPSchema

An instance of ActionSchema is connected by hasCausingEntityProperty to at least one instance of
class GPSchema

hasAffectedEntityProperty is an object property

The domain of hasAffectedEntityProperty is class StepSchema

The range of hasAffectedEntityProperty is class GPSchema

hasAffectedRigidStableEntityProperty is an object property

hasAffectedRigidStableEntityProperty is a subproperty of hasAffectedEntityProperty

hasAffectedRigidMovableEntityProperty is an object property

hasAffectedRigidMovableEntityProperty is a subproperty of hasAffectedEntityProperty

hasAffectedDeformableStableEntityProperty is an object property

hasAffectedDeformableStableEntityProperty is a subproperty of hasAffectedEntityProperty

hasAffectedDeformableMovableEntityProperty is an object property

hasAffectedDeformableMovableEntityProperty is a subproperty of hasAffectedEntityProperty

An action or an event is also connected to the states of the affected objects before and after the action
or the event, and, possibly, to the states of the produced objects. Notice that an event may produce
something even though it implies no action by the people involved in a craft; for instance, an event may
produce a fruit that has grown during the event or something done by someone outside the craft, such as
a tool or a piece of material. The CRO must therefore represent both these connections. Since they apply
to any step, they are not specified by schemas, like the connections seen so far, but are axiomatised
independently of schemas. However, their axiomatisation will have to wait for that of objects, which is
done in the next Section.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 56/119

Agents in actions

In this Section, we formalise the relationship between actions and actors. We recall that agents in action
schema are represented by roles, instances of class narr:Role, which give the type of agent required by
the action. In contrast, agents in virtual action are software tools, an instance of class SoftwareTool, the
subclass of VirtualTool, which is part of the Common Craft Ontology (see below). Finally, agents in real
actions are persons, instances of class ecrm:E21_Person, with the role established by the corresponding
schemas.

Following the modelling style adopted thus far, the CrO defies a single property for connecting actions to
agents, hasAgent, using localisation axioms to properly link the different kinds of actions to the different
kinds of agents. Because of its generality, hasAgent cannot be mapped in any CRM property.

SoftwareTool is a class

SoftwareTool is a subclass of Tool

hasAgent is an object property

An instance of ActionSchema is connected by hasAgent only to instances of class narr:Role

An instance of ActionSchema is connected by hasAgent to at least one instance of class narr:Role

An instance of VirtualAction is connected by hasAgent only to instances of class SoftwareTool

An instance of VirtualAction is connected by hasAgent to at least one instance of class
SoftwareTool

An instance of RealAction is connected by hasAgent only to instances of class ecrm:E21_Person

An instance of RealAction is connected by hasAgent to at least one instance of class
ecrm:E21_Person

2.5.1.3 Objects

Like processes and their constituents, also the objects affected by actions come in two main kinds, as
already pointed out in Section 3.2.2 Actions:

● virtual objects, that is mathematical models representing objects in the space of simulation, and

● real objects, that is semantic models representing objects in the real world.

Following the same approach adopted for steps and transitions, the CRO introduces class Object, having
as instances all objects of interest for crafts, and two subclasses of its: VirtualObject and RealObject.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 57/119

Object is a subclass of the CRM class ecrm:E70_Thing, which “comprises discrete, identifiable, instances
of E77 Persistent Item that are documented as single units, that either consists of matter or depend on
being carried by matter and are characterised by relative stability”. This definition applies to both the
physical human-made objects instances of class RealObject and the mathematical representations that
are instances of VirtualObject. To strengthen the link with the CRM the CRO further asserts class
VirtualObject as a subclass of ecrm:E73_Information_Object, which comprises “identifiable
immaterial items, such as poems, jokes, data sets, images, texts, multimedia objects, procedural
prescriptions, computer program code, algorithm or mathematical formulae, that have an objectively
recognizable structure and are documented as single units”, and class RealObject as a subclass of
ecrm:E24_Physical_Human-Made_Thing, which comprises “all persistent physical items of any size that
are purposely created by human activity”.

Object is a class

Object is a subclass of ecrm:E70_Thing

VirtualObject is a class

VirtualObject is a subclass of Object

VirtualObject is a subclass of ecrm:E73_Information_Object

RealObject is a class

RealObject is a subclass of Object

RealObject is a subclass of ecrm:E24_Physical_Human-Made_Thing

Classes for specific kinds of objects, such as for instance hammers or chisels, will be introduced in due
course upon modelling the actions in which these objects are involved.

In addition, we introduce a class for composite objects, CompositeObject, having as instances the objects
created in actions by assembling other objects, in ways that may vary from action to action.
CompositeObject is a subclass of Object and specialises in VirtualCompositeObject, also a subclass of
VirtualObject, and RealCompositeObject, also a subclass of RealObject.

CompositeObject is a class

CompositeObject is a subclass of Object

VirtualCompositeObject is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 58/119

VirtualCompositeObject is a subclass of CompositeObject

VirtualCompositeObject is a subclass of VirtualObject

RealCompositeObject is a class

RealCompositeObject is a subclass of RealObject

RealCompositeObject is a subclass of CompositeObject

The properties for associating composite objects to their components are taken directly from the CRM,
and are property ecrm:P148_has_component for virtual composite objects, and property
ecrm:P46_is_composed_of for real composite objects.

Graphically:

As argued above, object characteristics are grouped into time-dependent and time-independent, the
former giving the state of an object. To reflect this conceptualisation straightforwardly, the CRO
introduces two classes: ObjectProfile, a subclass of ecrm:E73_Information_Object holding the time-
independent characteristics of an object, and ObjectState, a subclass of ecrm:E3_Condition_State
holding the time-dependent ones. Each of these classes is further specialised along the virtual/real
dimensions, producing four classes:

● VirtualObjectProfile,

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 59/119

● VirtualObjectState,
● RealObjectProfile and
● RealObjectState.

ObjectProfile is a class

ObjectProfile is a subclass of ecrm:E73_Information_Object

ObjectState is a class

ObjectState is a subclass of ecrm:E3_Condition_State

VirtualObjectProfile is a class

VirtualObjectProfile is a subclass of ObjectProfile

VirtualObjectState is a class

VirtualObjectState is a subclass of ObjectState

RealObjectProfile is a class

RealObjectProfile is a subclass of ObjectProfile

RealObjectState is a class

RealObjectState is a subclass of ObjectState

Correspondingly, the CRO introduces two GPs for linking objects to their profiles and their states:

 hasProfile, a subproperty of ecrm:P67i_is_referred_to_by having Object as domain and
ObjectProfile as range; the inverse property isProfileOf is also introduced;

hasState, having Object as domain and ObjectState as range but no corresponding property
in the CRM, since the CRM property linking an object to a state, a subproperty of
ecrm:P44_has_condition, only applies to physical objects and is therefore not applicable to
virtual objects. The inverse property isStateOf is also introduced.

These properties are further localised as required by the GP pattern. In addition, both GPs are one-to-
many, a fact that is captured by cardinality axioms.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 60/119

hasProfile is an object property

hasProfile is a super-property of ecrm:P67i_is_referred_to_by

The domain of hasProfile is Object

The range of hasProfile is ObjectProfile

isProfileOf is an object property

isProfileOf is the inverse of property hasProfile

An instance of VirtualObject is connected by property hasProfile only to instances of class
VirtualObjectProfile

An instance of VirtualObject is connected by property hasProfile to exactly one instance of class
VirtualObjectProfile

An instance of VirtualObjectProfile is connected by property isProfileOf only to instances of class
VirtualObject

An instance of VirtualObjectProfile is connected by property isProfileOf to exactly one instance
of class VirtualObject

An instance of RealObject is connected by property hasProfile only to instances of class
RealObjectProfile

An instance of RealObject is connected by property hasProfile to exactly one instance of class
RealObjectProfile

An instance of RealObjectProfile is connected by property isProfileOf only to instances of class
RealObject

An instance of RealObjectProfile is connected by property isProfileOf to exactly one instance of
class RealObject

hasState is an object property

The domain of hasState is Object

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 61/119

The range of hasState is ObjectState

isStateOf is an object property

isStateOf is the inverse of property hasState

An instance of VirtualObject is connected by property hasState only to instances of class
VirtualObjectState

An instance of VirtualObjectState is connected by property isStateOf only to instances of class
VirtualObject

An instance of VirtualObjectState is connected by property isStateOf to exactly one instance of
class VirtualObject

An instance of RealObject is connected by property hasState only to instances of class
RealObjectState

An instance of RealObjectState is connected by property isStateOf only to instances of class
RealObject

An instance of RealObjectState is connected by property isStateOf to exactly one instance of class
RealObject

Finally, let us consider how profiles and states are represented. Conceptually, profiles and states of virtual
objects are mathematical representations of the corresponding profiles and states of real objects,
respectively. However, for practical reasons, the profile of a virtual object is collected into a single
document, an instance of class ecrm:E31_Document; and the same goes for the state. The rationale
behind this choice is that the characteristics of virtual objects, whether time-independent or time-
dependent, are produced by the simulator and stored in the CRAEFT KB exclusively to be later consumed
by the same simulator, therefore the CRO does not need to enter the details of what characteristics are
represented and how, but simply provides the means for catering to the needs of the simulator. The
property connecting a virtual object profile or state to the document where it is represented is taken from
the CRM and is property ecrm:P70i_is_documented_in, which “describes the CRM Entities documented
by instances of E31 Document” and has class ecrm:E1_CRM_Entity as domain, therefore it applies to both
virtual object profiles and states, while its range is ecrm:E31_Document.

In contrast, the characteristics of real objects are given a semantical representation, that is, they are
expressed by linking the individuals representing the profile or the state of a real object (instances of
RealObjectProfile or RealObjectState, respectively) to the relevant individuals via the appropriate
properties. Since these individuals, the classes they belong to, and the properties linking them to an object
are dependent on the object at the end, they will be introduced upon modelling specific (real) actions.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 62/119

Graphically:

We are now ready to represent the association of a step with the states of the affected objects before and
after the step, and with the objects produced by the step, if any. The former associations are captured by
the GPs AOSBefore and AOSAfter, both having Step as domain and ObjectState as range. Notice that
these properties cannot be mapped to the CRM because they are used also to associate a virtual step with
states of virtual objects which are not physical objects, as already pointed out above. The remaining
axioms of the GP pattern are given below.

AOSBefore is an object property

The domain of AOSBefore is class Step

The range of AOSBefore is class ObjectState

An instance of VirtualStep is connected by property AOSBefore only to instances of class
VirtualObjectState

An instance of VirtualObjectState is connected by the inverse of property AOSBefore only to
instances of class VirtualStep

An instance of RealStep is connected by property AOSBefore only to instances of class
RealObjectState

An instance of RealObjectState is connected by the inverse of property AOSBefore only to instances
of class RealStep

AOSAfter is an object property

The domain of AOSAfter is class Step

The range of AOSAfter is class ObjectState

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 63/119

An instance of VirtualStep is connected by property AOSAfter only to instances of class
VirtualObjectState

An instance of VirtualObjectState is connected by the inverse of property AOSAfter only to
instances of class VirtualStep

An instance of RealStep is connected by property AOSAfter only to instances of class
RealObjectState

An instance of RealObjectState is connected by the inverse of property AOSAfter only to instances
of class RealStep

Notice that the most important fact relating actions and affected objects’ states is that, given an action
schema AS and a virtual action VA instance of AS, properties AOSBefore and AOSAfter should link VA with
all and only the states of the objects that are linked to VA by the properties given by one of the four sub-
properties of hasAffectedEntityProperty in VA. The same for any real action RA enacting VA.
Unfortunately, this fact cannot be axiomatised because the properties linking an action to its affected
objects are not known a priori, so they could only be denoted by object property expressions such as “the
property that is linked to a virtual action via property hasAffectedRigidStableEntityProperty”; but
the only property expressions allowed by OWL 2 DL are object properties and their inverses. The CRO can
therefore provide the weaker axiomatisation given above, consisting of localisation axioms establishing
that a virtual (resp. real) action can only be connected by properties AOSBefore and AOSAfter to states
of virtual (resp. real) objects, with no guarantee that these objects are amongst the affected objects of
the action.

To represent the association of a step with the created entities, the property produces is introduced in
the CRO, also a GP property, axiomatised below. If an action or an event does not produce any new object,
the property produces will connect that action or event with no object at all. As already remarked in 3.3.3
Step schemas, the domain of produces is class Step, as also events may result in a new object being
produced, while its range is class Object. Moreover, produces is a sub-property of the CRM property
ecrm:P92_brought_into_existence, which “links an instance of E63 Beginning of Existence to the
instance of E77 Persistent Item brought into existence by it”. This relationship automatically classifies the
steps that produce something as instances of the CRM class ecrm:E63_Beginning_of_Existence, that
is as “events that bring into existence any instance of E77 Persistent Item”. This is an intended
consequence.

produces is an object property

produces is a sub-property of property ecrm:P92_brought_into_existence

The domain of produces is class Step

The range of produces is class Object

https://docs.google.com/document/d/1Hg0flPJahT6CsUbWEXMrz0dkKUmIpylEit6elKvVczQ/edit#heading=h.u9zf05g8r3ab
https://docs.google.com/document/d/1Hg0flPJahT6CsUbWEXMrz0dkKUmIpylEit6elKvVczQ/edit#heading=h.u9zf05g8r3ab

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 64/119

An instance of VirtualStep is connected by property produces only to instances of class
VirtualObject

An instance of VirtualObject is connected by the inverse of property produces only to instances of
class VirtualStep

An instance of RealStep is connected by property produces only to instances of class RealObject

An instance of RealObject is connected by the inverse of property produces only to instances of class
RealStep

Graphically:

Representing causing entities

As explained above, causing entities are perdurants that play a causal role in actions. In this Section, we
discuss how causing entities are represented in the CRO.

Following the approach adopted for affected objects, the CRO could represent causing entities as objects
endowed with time-independent properties, connected to their causing entities via property hasProfile,
and with time-dependent properties represented as states, connected to their causing entities via
property hasState. The time-independent properties of, e.g., a force could be the nature, the type, the
measurement unit, and so on, while its time-dependent properties could be the vectors representing the
force along the time axis. While this representation is suitable for virtual actions, as the simulator needs
to know how to apply the force per unit of time, there is no application requirement to represent the
individual states of a force from a semantic point of view. Consequently, the CRO introduces a class,
named CausingEntity, a subclass of ecrm:E5_Event, having as instances causing entities in actions.
CausingEntity is further specialised in VirtualCausingEntity and RealCausingEntity for which no
further representation is offered. For virtual entities, the CRM property ecrm:P70i_is_doumented_in
can be used to link a virtual-causing entity to a document that gives the mathematical representation of
the entity. For real entities, a semantic representation can be given hinged on the real causing entity.

CausingEntity is a class

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 65/119

CausingEntity is a subclass of ecrm:E5_Event

VirtualCausingEntity is a class

VirtualCausingEntity is a subclass of CausingEntity

RealCausingEntity is a class

RealCausingEntity is a subclass of CausingEntity

2.5.1.4 Instantiation

We now axiomatise the GP instanceOf, which represents the instantiation relation between virtual
activities and the corresponding schemas. For convenience, we introduce also the inverse property of
instanceOf, hasInstance. The domain of instanceOf is the most specialised class that includes both
virtual steps and virtual transitions, which is the class VirtualActivity while its range is the class
ActivitySchema. Mapping instanceOf to a CRM property is not possible due to the generality of the
former.

instanceOf is an object property

The domain of instanceOf is class VirtualActivity

The range of instanceOf is class ActivitySchema

hasInstance is an object property

hasInstance is an inverse property of instanceOf

The following localisation axioms apply the instantiation property to steps. They are the axioms of the GP
pattern and cardinality axioms.

An instance of VirtualProcess is connected by instanceOf only to instances of ProcessSchema

An instance of VirtualProcess is connected by instanceOf to exactly one instance of ProcessSchema

An instance of ProcessSchema is connected by hasInstance only to instances of VirtualProcess

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 66/119

An instance of ProcessSchema is connected by hasInstance to at least one instance of
VirtualProcess

An instance of VirtualAction is connected by instanceOf only to instances of ActionSchema

An instance of VirtualAction is connected by instanceOf to exactly one instance of ActionSchema

An instance of ActionSchema is connected by hasInstance only to instances of VirtualAction

An instance of ActionSchema is connected by hasInstance to at least one instance of VirtualAction

An instance of VirtualEvent is connected by instanceOf only to instances of EventSchema

An instance of VirtualEvent is connected by instanceOf to exactly one instance of EventSchema

An instance of EventSchema is connected by hasInstance only to instances of VirtualEvent

An instance of EventSchema is connected by hasInstance to at least one instance of VirtualEvent

An instance of VirtualProcessStart is connected by instanceOf only to instances of
ProcessStartSchema

An instance of VirtualProcessStart is connected by instanceOf to exactly one instance of
ProcessStartSchema

An instance of ProcessStartSchema is connected by hasInstance only to instances of
VirtualProcessStart

An instance of ProcessStartSchema is connected by hasInstance to at least one instance of
VirtualProcessStart

An instance of VirtualProcessEnd is connected by instanceOf only to instances of
ProcessEndSchema

An instance of VirtualProcessEnd is connected by instanceOf to exactly one instance of
ProcessStartSchema

An instance of ProcessEndSchema is connected by hasInstance only to instances of
VirtualProcessEnd

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 67/119

An instance of ProcessEndSchema is connected by hasInstance to at least one instance of
VirtualProcessEnd

Similarly, the following axioms apply the instantiation property to transitions. They are the axioms of the
GP pattern and cardinality axioms.

An instance of SimpleVirtualTransition is connected by instanceOf only to instances of
SimpleTransitionSchema or DecisionTransitionSchema or MergeTransitionSchema

An instance of SimpleVirtualTransition is connected by instanceOf to exactly one instance of
SimpleTransitionSchema or DecisionTransitionSchema or MergeTransitionSchema

An instance of SimpleTransitionSchema is connected by hasInstance only to instances of
SimpleVirtualTransition

An instance of SimpleTransitionSchema is connected by hasInstance to at least one instance of
SimpleVirtualTransition

An instance of DecisionTransitionSchema is connected by hasInstance only to instances of
SimpleVirtualTransition

An instance of DecisionTransitionSchema is connected by hasInstance to at least one instance of
SimpleVirtualTransition

An instance of MergeTransitionSchema is connected by hasInstance only to instances of
SimpleVirtualTransition

An instance of MergeTransitionSchema is connected by hasInstance to at least one instance of
SimpleVirtualTransition

An instance of ForkVirtualTransition is connected by instanceOf only to instances of
ForkTransitionSchema

An instance of ForkVirtualTransition is connected by instanceOf to exactly one instance of
ForkTransitionSchema

An instance of ForkTransitionSchema is connected by hasInstance only to instances of
ForkVirtualTransition

An instance of ForkTransitionSchema is connected by hasInstance to at least one instance of
ForkVirtualTransition

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 68/119

An instance of JoinVirtualTransition is connected by instanceOf only to instances of
JoinTransitionSchema

An instance of JoinVirtualTransition is connected by instanceOf to exactly one instance of
JoinTransitionSchema

An instance of JoinTransitionSchema is connected by hasInstance only to instances of
JoinVirtualTransition

An instance of JoinTransitionSchema is connected by hasInstance to at least one instance of
JoinVirtualTransition

The relation between schemas and the corresponding virtual entities with respect to the composition
property is as follows:

Let VP be a virtual process and PS be a process schema such that VP is an instance of PS. Then, for every
virtual step VS that is a step of VP, there exists a step schema SS that is a step of VS, such that VS is an
instance of SS. Conversely, for every step schema SS that is a step of PS, there exists a virtual step VS that
is a step of VP, such that VS is an instance of SS.

The axiom is an abbreviation for three axioms, one for each of the three entities that can be a step: event,
action or process. Now, the cardinality axioms on instantiation guarantee that a virtual step is an instance
of exactly one schema, hence, given VP and VS above, there is a unique PS such that VP is an instance of
PS, and a unique SS such that VS is an instance of SS. It follows that the above axiom is equivalent to the
following axiom, which can be used to automatically derive the instanceOf property between virtual
processes and the corresponding schemas:

Let VP be a virtual process and VS be a step-in VP. Then VP is an instance of the process schema PS that
has as step the step schema of VS.

This axiom can be expressed as an OWL 2 DL complex role inclusion axiom as follows, where hasStep is
the composition property of processes and isStepOf is its inverse (notice that these properties can be
simply derived from the properties hasHead and hasTail):

The chain formed by hasStep and instanceOf and isStepOf is a subproperty of instanceOf

Unfortunately, this axiom would make instanceOf a composite property, on which no cardinality axiom
can be stated, lest a violation of the OWL 2 DL global restriction on simple roles. For this reason, the axiom
is not included in the CRO and the correct relationship between schemas and instances is checked
procedurally.

Another important axiom on instantiation concerns the correct relation between the properties declared
in an action of event schema and the properties used in virtual actions or events that are an instance of
that schema. In particular, any property declared in an action schema via hasCausingEntityProperty or

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 69/119

any subproperty of hasAffectedEntityProperty, must be used in any instance of the schema. This
axiom completes the axiom about the proper association between a step and the states of the affected
objects, spelt out in Section Objects above, and cannot be expressed in OWL 2 DL for the same reasons.

2.5.1.5 Enactment

We finally axiomatize enactment by GP enactmentOf, which represents the enactment relation between
real activities and the corresponding virtual activities. For convenience, we introduce also the inverse
property of enactmentOf, isEnactedBy. For the reasons given in the previous Section, the domain of
enactmentOf is class RealActivity, while its range is class VirtualActivity.

Similarly to the instanceOf property, mapping to a CRM property is not possible due to the generality of
the enactmentOf property.

enactmentOf is an object property

The domain of enactmentOf is class RealActivity

The range of enactmentOf is class VirtualActivity

isEnactedby is an object property

isEnactedby is an inverse property of enactmentOf

Enacted entities are performed by agents and situated in space and time. To represent these aspects, we
use the three CRM properties already mentioned in Section 2.3.2, namely ecrm:P14_carried_out_by,
which “describes the active participation of an instance of E39 Actor in an instance of E7 Activity”;
ecrm:P7_took_place_at, which “describes the spatial location of an instance of E4 Period”; and
ecrm:P4_has_time-span, which “associates an instance of E2 Temporal Entity with the instance of E52
Time-Span during which it was on-going”.

The following axioms apply to the enactment property to steps. They are the axioms of the GP pattern
and cardinality axioms.

An instance of RealProcess is connected by enactmentOf only to instances of VirtualProcess

An instance of RealProcess is connected by enactmentOf to exactly one instance of VirtualProcess

An instance of VirtualProcess is connected by isEnactedby only to instances of RealProcess

An instance of VirtualProcess is connected by isEnactedby to at least one instance of RealProcess

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 70/119

An instance of RealAction is connected by enactmentOf only to instances of VirtualAction

An instance of RealAction is connected by enactmentOf to exactly one instance of VirtualAction

An instance of VirtualAction is connected by isEnactedby only to instances of RealAction

An instance of VirtualAction is connected by isEnactedby to at least one instance of RealAction

An instance of RealEvent is connected by enactmentOf only to instances of VirtualEvent

An instance of RealEvent is connected by enactmentOf to exactly one instance of VirtualEvent

An instance of VirtualEvent is connected by isEnactedby only to instances of RealEvent

An instance of VirtualEvent is connected by isEnactedby to at least one instance of RealEvent

An instance of RealProcessStart is connected by enactmentOf only to instances of
VirtualProcessStart

An instance of RealProcessStart is connected by enactmentOf to exactly one instance of
VirtualProcessStart

An instance of VirtualProcessStart is connected by isEnactedby only to instances of
RealProcessStart

An instance of VirtualProcessStart is connected by isEnactedby to at least one instance of
RealProcessStart

Similarly, the following axioms apply to the enactment property to transitions. They are the axioms of the
GP pattern and cardinality axioms.

An instance of SimpleTransition is connected by enactmentOf only to instances of
SimpleVirtualTransition

An instance of SimpleTransition is connected by enactmentOf to exactly one instance of
SimpleVirtualTransition

An instance of SimpleVirtualTransition is connected by isEnactedBy only to instances of
SimpleTransition

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 71/119

An instance of SimpleVirtualTransition is connected by isEnactedBy to at least one instance of
SimpleTransition

An instance of ForkTransition is connected by enactmentOf only to instances of
ForkVirtualTransition

An instance of ForkTransition is connected by enactmentOf to exactly one instance of
ForkVirtualTransition

An instance of ForkVirtualTransition is connected by isEnactedBy only to instances of
ForkTransition

An instance of ForkVirtualTransition is connected by isEnactedBy to at least one instance of
ForkTransition

An instance of JoinTransition is connected by enactmentOf only to instances of
JoinVirtualTransition

An instance of JoinTransition is connected by enactmentOf to exactly one instance of
JoinVirtualTransition

An instance of JoinVirtualTransition is connected by isEnactedBy only to instances of
JoinTransition

An instance of JoinVirtualTransition is connected by isEnactedBy to at least one instance of
JoinTransition

The enactment axiom concerning activities models the relation between virtual and the corresponding
real entities with respect to the composition property. It is as follows:

Let P be a process and VP be a virtual process such that P is an enactment of VP. Then, for every step S of
P, there exists a virtual step VS of VP, such that S is an enactment of VS. Conversely, for every virtual step
VS of VP there exists a step S of P, such that S is an enactment of VS.

Also in this case, the cardinality axioms on enactment guarantee that a step is the enactment of exactly
one virtual step, hence, given P and S above, there is a unique VP such that P is an enactment of VP, and
a unique VS such that S is an enactment of VS. It follows that the above axiom is equivalent to the
following:

Let P be a process and S be a step in P. Then P is an enactment of the virtual process VP that has as a step
the virtual step enacted by S.

This axiom can be expressed as an OWL 2 DL complex role inclusion axiom as follows, where property
hasStep and its inverse isStepOf are as described in the previous Section:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 72/119

The chain formed by hasStep and enactmentOf and isStepOf is a subproperty of enactmentOf

Similarly, the enactmentOf relation can be extended to narratives, establishing the enactment of the
relation between a real and a virtual narrative:

The chain formed by hasFabula and enactmentOf and isFabulaOf is a subproperty of enactmentOf

Unfortunately, these axioms make enactmentOf a composite property, on which no cardinality axiom can
be stated, lest a violation of the OWL 2 DL global restriction on simple roles. For this reason, the axioms
are not included in the CrO.

2.5.2 Transitions

Classes for transition schemas and virtual and real transitions have been already introduced. We now
introduce two GPs to model the structure of transitions. Since a transition models a directed hyperedge,
it has a set of nodes as the tail and a set of nodes as the head. We use GPs hasTail and hasHead to
associate the nodes that are in the tail or the head to their transitions, respectively. For convenience, we
also introduce their inverses isTailOf and isHeadOf, respectively. The domain and range of hasTail
and hasHead is the most specialised class that includes transition schemas, virtual transitions and real
transitions; now, transition schemas are instances of ecrm:E29_Design_or_procedure, while virtual and
real transitions are instances of ecrm:E5_Event. The domain of hasTail and hasHead is therefore
ecrm:E1_CRM_Entity. By the same argument, we have that also the range of hasTail and hasHead is
therefore ecrm:E1_CRM_Entity. Again by the same argument, we have that It is not possible to map
these properties to the CRM, since no CRM property captures the composition of any CRM entity. Indeed,
the CRM uses property ecrm:P106_is_composed_of for the composition of plans and property
ecrm:P5_consists_of for the composition of events. Thus, we should relate hasTail and hasHead to a
disjunction of CRM properties; unfortunately, this kind of property expression is not supported by OWL 2
DL.

Notice that a transition may have another transition as tail or head, for instance, if a merge transition
follows a decision transition. This situation may be avoided by introducing “dummy” activity nodes,
corresponding to no action, created for the sole purpose of enclosing transitions between activity nodes.
This would be necessary if transitions were modelled as properties, as it is not possible to have properties
of properties. However, transitions are modelled as classes hence the introduction of such dummy activity
nodes is not necessary.

hasHead is an object property

The domain of hasHead is class ecrm:E1_CRM_Entity

The range of hasHead is class ecrm:E1_CRM_Entity

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 73/119

isHeadOf is an object property

isHeadOf is an inverse property of hasHead

hasTail is an object property

The domain of hasTail is class ecrm:E1_CRM_Entity

The range of hasTail is class ecrm:E1_CRM_Entity

isTailOf is an object property

isTailOf is an inverse property of hasTail

Based on the assumptions given in Section Processes, an activity schema can be in the tail or in the head
of at most one transition schema, and the same applies to virtual and real activities.

An instance of ActivitySchema is connected by isTailOf to at most one instance of class
TransitionSchema

An instance of ActivitySchema is connected by isHeadOf to at most one instance of class
TransitionSchema

An instance of Activity is connected by isTailOf to at most one instance of class Transition

An instance of Activity is connected by isHeadOf to at most one instance of class Transition

The axiomatisation of the various kinds of transitions is given in the remainder of this Section.

2.5.2.1 Simple transitions

A simple transition represents the sequential, unconditional passage from one step (the input step) to
another one (the output step). This structure applies to all three levels at which simple transitions are
represented (i.e., to instances of SimpleTransitionSchema, to instances of SimpleVirtualTransition
and instances of SimpleTransition) and can be modelled by appropriately axiomatizing the properties
hasHead and hasTail already introduced. In particular: a simple transition schema has exactly one tail
and one head, which is an activity schema, that is, a step schema or a transition schema. Conversely, an
activity schema can be the tail or the head of at most one transition schema, of whatever kind.

An instance of SimpleTransitionSchema is connected by hasTail only to instances of class
ActivitySchema

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 74/119

An instance of SimpleTransitionSchema is connected by hasTail to exactly one instance of class
ActivitySchema

An instance of SimpleTransitionSchema is connected by hasHead only to instances of class
ActivitySchema

An instance of SimpleTransitionSchema is connected by hasHead to exactly one instance of class
ActivitySchema

A virtual simple transition has exactly one tail and one head, which is a virtual activity. Conversely, a virtual
activity can be the tail or the head of at most one virtual transition, of whatever kind.

An instance of VirtualSimpleTransition is connected by hasTail only to instances of class
VirtualActivity

An instance of VirtualSimpleTransition is connected by hasTail to exactly one instance of class
VirtualActivity

An instance of VirtualSimpleTransition is connected by hasHead only to instances of class
VirtualActivity

An instance of VirtualSimpleTransition is connected by hasHead to exactly one instance of class
VirtualActivity

An instance of VirtualActivity is connected by isTailOf to at most one instance of class
VirtualTransition

An instance of VirtualActivity is connected by isHeadOf to at most one instance of class
VirtualTransition

Finally, a real simple transition has exactly one tail and one head, which is a real activity. Conversely, a
real activity can be the tail or the head of at most one transition, of whatever kind.

An instance of RealSimpleTransition is connected by hasTail only to instances of class
RealActivity

An instance of RealSimpleTransition is connected by hasTail to exactly one instance of class
RealActivity

An instance of RealSimpleTransition is connected by hasHead only to instances of class
RealActivity

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 75/119

An instance of RealSimpleTransition is connected by hasHead to exactly one instance of class
RealActivity

An instance of RealActivity is connected by isTailOf to at most one instance of class
RealTransition

An instance of RealActivity is connected by isHeadOf to at most one instance of class
RealTransition

2.5.2.2 Decision transitions

A decision transition represents the selection of one of several alternatives, based on the evaluation of a
predicate. Consequently, decision transition schemas have one tail schema and two or more head
schemas, each associated with a predicate. In contrast, virtual decision transitions have one tail and one
head, because they are instances of schemas in which the alternative has been already selected. Similarly,
decision transitions have only one head and one tail. In addition to properties hasTail and hasHead, the
CrO uses:

● class craeft:DTAlternativeSchema to represent each alternative in a decision transition
schema; craeft:DTAlternativeSchema is a subclass of ecrm:E29_Design_or_Procedure, as its
instances represents parts of plans;

● property craeft:hasAlternative to associate a decision transition schema to each alternative;
craeft:hasAlternative is a subproperty of ecrm:P69_has_association_with, which as
already remarked is the CRM composition property for plans;

● class craeft:Predicate to represent the predicate associated with each alternative; also
craeft:Predicate is a subclass of ecrm:E29_Design_or_Procedure, as its instances represent
parts of plans;

● properties craeft:leadsTo and craeft:hasPredicate to associate each alternative to a tail of
the schema and a predicate, respectively. Each of these properties is a sub-property of
ecrm:P69_has_association_with, as they connect plans to their parts. Notice that the link
between a decision transition schema and each of its heads, which would be represented by
property craeft:hasHead, could be deduced from the composition of craeft:hasAlternative
and craeft:leadsTo by a complex role inclusion axiom. However, the inclusion of this axiom in
the CrO would make craeft:hasHead a composite property, on which no cardinality axiom can
be stated, lest a violation of the OWL 2 DL global restriction on simple roles. Since localisation of
craeft:hasHead does require cardinality axioms, the complex role inclusion axiom is not included
in the CrO. As a consequence, the knowledge of heads of Decision Transition Schemas is recovered
procedurally.

The linguistic expression of a predicate is represented by a string of characters, which gives the expression
in any convenient implementation language. That expression is associated with an instance of class
craeft:Predicate by property ecrm:P190_has_symbolic_content.

The following Figure illustrates the just described representation of decision transition schemas,
axiomatized next:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 76/119

Figure 13 Representation of alternatives in Decision Transition Schemas.

DTAlternativeSchema is a class

DTAlternativeSchema is a subclass of ecrm:E29_Design_or_Procedure

leadsTo is an object property

leadsTo is a subproperty of ecrm:P69_has_association_with

The domain of leadsTo is class DTAlternativeSchema

The range of leadsTo is class ActivitySchema

An instance of DTAlternativeSchema is connected by leadsTo to exactly one instance of
ActivitySchema

An instance of ActivitySchema is connected by the inverse of leadsTo to at most one instance of
DTAlternativeSchema

Predicate is a class

Predicate is a subclass of ecrm:E29_Design_or_Procedure

hasPredicate is an object property

hasPredicate is a subproperty of ecrm:P69_has_association_with

The domain of hasPredicate is class DTAlternativeSchema

The range of hasPredicate is class Predicate

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 77/119

An instance of DTAlternativeSchema is connected by hasPredicate to exactly one instance of
Predicate

An instance of Predicate is connected by the inverse of hasPredicate to exactly one instance of
DTAlternativeSchema

hasAlternative is an object property

hasAlternative is a subproperty of ecrm:P69_has_association_with

The domain of hasAlternative is class DecisionTransitionSchema

The range of hasAlternative is class DTAlternativeSchema

An instance of DecisionTransitionSchema is connected by hasAlternative to at least two instances
of DTAlternativeSchema

An instance of DTAlternativeSchema is connected by the inverse of hasAlternative to exactly one
instance of DecisionTransitionSchema

We now localise hasTail to decision transition schemas. A decision transition schema has a single tail,
which is either a step schema or a transition schema.

An instance of DecisionTransitionSchema is connected by hasTail only to instances of class
ActivitySchema

An instance of DecisionTransitionSchema is connected by hasTail to exactly one instance of class
ActivitySchema

2.5.2.3 Merge transitions

A merge transition schema brings together two or more alternative paths. Consequently, it has two or
more tails and exactly one head, which can be a step schema or a transition schema.

An instance of MergeTransitionSchema is connected by hasTail only to instances of class
ActivitySchema

An instance of MergeTransitionSchema is connected by hasTail to at least two instances of class
ActivitySchema

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 78/119

An instance of MergeTransitionSchema is connected by hasHead only to instances of class
ActivitySchema

An instance of MergeTransitionSchema is connected by hasHead to exactly one instance of class
ActivitySchema

2.5.2.4 Fork transitions

A fork transition has a single tail and to or more heads, similar to a decision transition, except that there
are no predicates associated with heads because all the paths outcoming from a fork are supposed to be
executed, in parallel. Consequently, the same structure is replicated for fork transition schemas. In
contrast, to represent fork transitions, whether virtual or real, it is sufficient to properly localise properties
craeft:hasTail and craeft:hasHead.

A fork transition schema has exactly one tail and two or more heads, which can be step schemas or
transition schemas.

An instance of ForkTransitionSchema is connected by hasTail only to instances of class
ActivitySchema

An instance of ForkTransitionSchema is connected by hasTail to exactly one instance of class
ActivitySchema

An instance of ForkTransitionSchema is connected by hasHead only to instances of class
ActivitySchema

An instance of ForkTransitionSchema is connected by hasHead to at least two instances of class
ActivitySchema

A fork virtual transition has exactly one tail and two or more heads, which can be a virtual step or a virtual
transition.

An instance of VirtualForkTransition is connected by hasTail only to instances of class
VirtualActivity

An instance of VirtualForkTransition is connected by hasTail to exactly one instance of class
VirtualActivity

An instance of VirtualForkTransition is connected by hasHead only to instances of class
VirtualActivity

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 79/119

An instance of VirtualForkTransition is connected by hasHead to at least two instances of class
VirtualActivity

A fork transition has exactly one tail and two or more heads, which can be steps or transitions.

An instance of RealForkTransition is connected by hasTail only to instances of class RealActivity

An instance of RealForkTransition is connected by hasTail to exactly one instance of class
RealActivity

An instance of RealForkTransition is connected by hasHead only to instances of class RealActivity

An instance of RealForkTransition is connected by hasHead to at least two instances of class
RealActivity

2.5.2.5 Join transitions

Join transitions are similar to merge transitions, they have at least two tails and one head, except that
their tails do not represent alternatives but are supposed to be all present because they are parallel
courses of action that the join synchronises. Consequently, the same structure is replicated at all levels,
similar to fork transitions. To represent join transitions, it is sufficient to properly localise properties
craeft:hasTail and craeft:hasHead.

A join transition schema has two or more tails and one head, which can be step schemas or transition
schemas.

An instance of JoinTransitionSchema is connected by hasTail only to instances of class
ActivitySchema

An instance of JoinTransitionSchema is connected by hasTail to at least two instances of class
ActivitySchema

An instance of JoinTransitionSchema is connected by hasHead only to instances of class
ActivitySchema

An instance of JoinTransitionSchema is connected by hasHead to exactly one instance of class
ActivitySchema

A joint virtual transition has two or more tails and one head, which can be a virtual step or a virtual
transition.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 80/119

An instance of VirtualJoinTransition is connected by hasTail only to instances of class
VirtualActivity

An instance of VirtualJoinTransition is connected by hasTail to at least two instances of class
VirtualActivity

An instance of VirtualJoinTransition is connected by hasHead only to instances of class
VirtualActivity

An instance of VirtualJoinTransition is connected by hasHead to exactly one instance of class
VirtualActivity

A join transition has two or more tails and one head, which can be a step or a transition.

An instance of RealJoinTransition is connected by hasTail only to instances of class RealActivity

An instance of RealJoinTransition is connected by hasTail to at least two instances of class
RealActivity

An instance of RealJoinTransition is connected by hasHead only to instances of class RealActivity

An instance of RealJoinTransition is connected by hasHead to exactly one instance of class
RealActivity

2.5.3 Reusing step schemas

In representing activities, the CrO is based on the assumption that a step occurs only once in a process.
For instance, the axiom that an instance of RealJoinTransition is connected by hasHead to exactly one
instance of class RealActivity, reflects the fact the same real activity cannot be the head of more than
one join transition. By applying the same axiom to all kinds of transitions, the ontology guarantees that
the same activity does not occur more than once in a process.

This assumption is justified by the fact that, in real processes, an action or an event is a unique
phenomenon, situated in time and space, and the same action or event cannot occur in two different
situations. Indeed, the assumption descends from the basic laws of Newtonian physics, such as the one
sanctioning the impossibility of locating the same object in two different places at the same time (as we
all know things are different in quantum physics but crafts are not quantum phenomena).

The same applies to virtual steps. Even though a virtual action, being a mathematical representation of an
action, is bound to be deterministic, (therefore any execution of the simulation that models the action will
always yield the same results, once given the same input parameters), the action of running the simulation

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 81/119

is a real action and is therefore unique, even though the simulation per sé is a deterministic process that
will always be the same. The same applies to virtual events.

The assumption does not hold for schemas, though, because schemas do not happen: they are
descriptions of things that happen, but descriptions themselves do not happen. As a consequence, the
possibility for an action or an event schema to occur several times within a process schema is not only
real, but quite common: in a glass-blowing craft, the craftsperson may need to instil a bubble of air into
the gob of glass at several points of the craft: upon gathering the glass from the furnace, in case they need
to gather a large quantity, and before giving the desired shape to the glass in the mould, in case the glass
does not have the required volume or density. The schema describing how to insulfate a bubble of air into
the gob is the same and it is not only convenient but fundamental to represent the fact that the same
schema is applied in both cases.

We face therefore the necessity of allowing a step schema to occur several times in a process schema.
This is not allowed by the axioms we have given so far, as the ontology treats in the same way step
schemas, virtual steps and real steps. One possible solution would be to drop those axioms for step
schemas. But if we did so, the models admitted by the ontology would be far more than just those desired,
as step schemas would enjoy total freedom. To solve the problem without compromising the integrity of
the knowledge graphs consistent with the ontology, the CrO adopts the following strategy: it keeps the
axioms sanctioning the uniqueness of step schemas in process schemas and introduces one property
representing the fact that two schemas are different occurrences of the. Same schema. The former
ensures the syntactic correctness of process schemas, while the latter allows representing the multiple
occurrences of the same step schema in a process schema. Since the just described relation between step
schemas is a sameness relation, it is an equivalence relation, thus reflexive, symmetric and transitive, and
creates equivalence classes, each including the step schemas that are clones of the same schema. The
property that the CrO uses to represent this relation is called sameStepSchemaAs. sameStepSchemaAs has
StepSchema as domain and as range and is declared to be reflexive, symmetric and transitive.

sameStepSchemaAs is an object property

The domain of sameStepSchemaAs is class StepSchema

The range of sameStepSchemaAs is class StepSchema

sameStepSchemaAs is reflexive

sameStepSchemaAs is symmetric

sameStepSchemaAs is transitive

Let us now discuss the consequences of sameness axioms. We recall that a step schema can be an action,
an event, or a process schema.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 82/119

If two action schemas describe the same action then they share all their characteristics, namely: action
function, action type, machine type, and all the properties for associating causing and affected entities to
the instances of the schemas. Happily, OWL 2 DL is expressive enough to allow stating that two action
schemas that are connected by the sameStepSchemaAs property share these characteristics. The
expression is based on the appropriate complex role Inclusion axioms, given next:

The chain formed by sameStepSchemaAs and hasActionFunction is a subproperty of
hasActionFunction

The chain formed by sameStepSchemaAs and hasActionType is a subproperty of hasActionType

The chain formed by sameStepSchemaAs and hasMachineType is a subproperty of hasMachineType

The chain formed by sameStepSchemaAs and hasCausingEntityProperty is a subproperty of
hasCausingEntityProperty

The chain formed by sameStepSchemaAs and hasAffectedEntityProperty is a subproperty of
hasAffectedEntityProperty

The chain formed by sameStepSchemaAs and hasAffectedEntityProperty is a subproperty of
hasAffectedEntityProperty

The chain formed by sameStepSchemaAs and hasAffectedRigidStableEntityProperty is a
subproperty of hasAffectedRigidStableEntityProperty

The chain f. by sameStepSchemaAs and hasAffectedRigidMovableEntityProperty is a subproperty
of hasAffectedRigidMovableEntityProperty

The chain f. by sameStepSchemaAs and hasAffectedDeformableStableEntityProperty is a
subproperty of hasAffectedDeformableStableEntityProperty

The chain f. by sameStepSchemaAs and hasAffectedDeformableMovableEntityProperty is a
subproperty of hasAffectedDeformableMovableEntityProperty

The net effect of these axioms is to “copy” one action schema S into any action schema S’ that is the same
as S, including S itself, due to the reflexivity of sameStepSchemaAs. In practice, it suffices to specify one
schema S and the sameness of any schema S’ to S to have the property values of S copied into S’. As
explained above, the copying mechanisms realised by the axioms above allow using different step
schemas in process schemas, to guarantee the correctness of the process schema specifications, while
avoiding duplicating the schemas.

Event schemas are characterised only by the duration property, which can be “copied” between the same
event schemas using the following complex role inclusion axiom:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 83/119

The chain formed by sameStepSchemaAs and duration is a subproperty of duration

The same treatment cannot be applied to process schemas. This is because a process schema consists of
transition and step schemas, and “copying” such schemas in an axiomatic way means producing axioms
that have the copy transition and step schemas as a consequence. OWL 2 DL does not possess the
expressivity required for that, so the CrO allows to state sameness between process schemas but does
not compute the consequences of such a statement. This would have to be done programmatically, much
in the same way instantiation, that is, the generation of a virtual process from a process schema is done.
Instantiation is discussed in the next Section.

2.6 Linking to standard dictionaries

To provide the widest interoperability of the KB built by the CRAEFT project, the CrO provides classes and
properties for linking to prominent semantic dictionaries. The considered dictionaries are de facto
standards in CH; they are the Getty Art & Architecture Thesaurus (AAT), the Catalog of Art Collections
(CONA), the Thesaurus of Geographic Names (TGN), and the Union List of Artist Names (ULAN).

In addition to widening the interoperability of the CRAEFT KB, linking to these dictionaries increases the
system's capacity for precise and comprehensive documentation and eases data entry, by avoiding
repeating the entry of information that already exists online.

The approach followed to link to these dictionaries is very simple. For every dictionary, the ontology
provides:

● A specific class, a subclass of ecrm:E55_Type, including as instances the terms of the dictionary;
the class is named NNNTerm, where NNN is a (popular) name of the dictionary, e.g., AAT;

● A specific property, subproperty of ecrm:P2_has_type, for linking any individual to a term from
the dictionary. The property is named hasNNNTerm, where NNN is as above. The domain of this
property is the most specific CrO class that includes the individuals addressed by the dictionary,
while its range is the class NNNTerm.

As can be seen, the approach is quite general and can be easily applied to other similar resources. Each
dictionary is considered in the remaining subsections of this section. As this extraction of information from
the aforementioned vocabularies may be useful to others, we provide their source code that implements
it here: https://zenodo.org/records/10532597.

2.6.1.1 AAT

The AAT includes generic terms, and associated dates, relationships, and other information about
concepts related to or required to catalogue, discover, and retrieve information about art, architecture,
and other visual cultural heritage, including related disciplines dealing with visual works, such as
archaeology and conservation, where the works are of the type collected by art museums and repositories
for visual cultural heritage, or that are architecture.

https://zenodo.org/records/10532597

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 84/119

The inclusion of Getty AAT was to enhance the system's vocabulary related to art, architecture, and
material culture. The AAT dictionary is the basic dictionary used by the CRAEFT Authoring Platform,
illustrated below. The class including the Getty terms is GettyTerm. The property for linking to the AAT is
hasGettyTerm. Every knowledge entity in the system has an annotation from AAT, thus the domain of
hasGettyTerm is left unspecified for generality.

 GettyTerm is a class

 GettyTerm is a subclass of ecrm:E55_Type

 hasGettyTerm is an object property

 hasGettyTerm is a subproperty of ecrm:P2_has_type

 The range of hasGettyTerm is class GettyTerm

The specification of the Getty term is ensured and automated by adding the pertinent annotation by
default to each instantiated knowledge entity, at the data input form. Naturally, this default semantic
annotation is generic and it is left to the user to specialise it, if needed and if known. The default
annotations are provided in the table below. We recall that in the craft ontology, all digital assets are
media objects, while they may differ in type (image, video, 3D).

Media object
(image)

http://semantics.gr/authorities/digital-item-types/1332557240 - Born-digital
photograph

Media object
(video)

http://semantics.gr/authorities/digital-item-types/346883033 - Born-digital
video

Media object
(3D model)

http://vocab.getty.edu/aat/300411661 - virtual models

Person http://vocab.getty.edu/aat/300024979 - people (agents)

Social groups http://vocab.getty.edu/aat/300025948 - organizations (groups)

Location http://vocab.getty.edu/aat/300248479 - location (physical position)

Tool http://vocab.getty.edu/aat/300122241 - tools

Product http://vocab.getty.edu/aat/300387427 - products

http://semantics.gr/authorities/digital-item-types/1332557240
http://semantics.gr/authorities/digital-item-types/346883033
http://vocab.getty.edu/aat/300411661
http://vocab.getty.edu/aat/300024979
http://vocab.getty.edu/aat/300025948
http://vocab.getty.edu/aat/300248479
http://vocab.getty.edu/aat/300122241
http://vocab.getty.edu/aat/300387427

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 85/119

Event
http://vocab.getty.edu/aat/300069084 - events (activities) (Events (hierarchy
name))

Process http://vocab.getty.edu/aat/300138076 - processes

When the user documents any of these entities the appropriate annotation is by default entered. The user
may specialise these annotations according to the available knowledge about the knowledge entity. The
example below demonstrates such a specialisation, for a handcrafted musical instrument (a lute).

Figure 14. The page for a craft product with semantic annotations.

In the example above, the following semantic annotations have been added by the user to the default
one.

http://vocab.getty.edu/page/aat/300042101 - lutes (chordophones)

http://semantics.gr/authorities/general-terms-ekt/3929 - λαούτο

http://semantics.gr/authorities/general-terms-ekt/3929 - lute

Specifically, the term “lutes (chordophones)” specialises in the product type. In addition, the dictionary of
the Greek National Aggregator has been used, so that the digital assets can be ingested in Europeana. This
last semantic annotation has been added in both the Greek and the English languages.

It ought to be noted that although the AAT dictionary is more often used to document tangible heritage,
we found it very useful for the documentation of intangible heritage as well. Verbs are equally well
represented in the AAT and their hierarchical structure is quite useful in the semantic characterisation of
actions and processes. We provide two examples below.

http://vocab.getty.edu/aat/300069084
http://vocab.getty.edu/aat/300138076
http://vocab.getty.edu/page/aat/300042101
http://semantics.gr/authorities/general-terms-ekt/3929
http://semantics.gr/authorities/general-terms-ekt/3929

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 86/119

Figure 15. Two pages for craft process steps, with semantic annotations.

The examples show two process steps, one from glasswork and one from textile manufacturing. The first
example regards the cleaning of a blowpipe, which is annotated as

http://vocab.getty.edu/aat/300219637 - dry cleaning

since the cleaning takes place by scrubbing the blowpipe, without the use of water or any other cleaning
substance. The second example regards the collection of plants for dyeing threads with natural
ingredients and is annotated with two terms:

http://vocab.getty.edu/page/aat/300077121 - collecting

http://vocab.getty.edu/page/aat/300417516 - harvesting

http://vocab.getty.edu/aat/300219637
http://vocab.getty.edu/page/aat/300077121
http://vocab.getty.edu/page/aat/300417516

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 87/119

to indicate the collection process by the human agent, as well as the fact that the collected items are plant
“products” that grew over the year (the corresponding process schema indicates the appropriate time of
the year for this harvesting).

Although we initially added the AAT annotations to be able to expose our digital assets for ingestion to
Europeana, we noticed an added value advantage. The thesaurus structure of the AAT dictionary enables
the discovery of very specific terms that may not necessarily be known to the user. The addition of the
AAT annotations enables, thus, users to access a broader range of standardised terminology for
documenting the represented knowledge.

2.6.1.2 CONA

The incorporation of CONA extends the system's capability to include detailed information on art
collections, helping users connect and explore diverse art collections worldwide.

CONA compiles titles, attributions, depicted subjects, and other metadata about works of art,
architecture, and cultural heritage, both extant and historical, physical and conceptual. Metadata is
gathered and linked from museum collections, special collections, archives, libraries, scholarly research,
and other sources.

CONA is focused on “unique” artworks, or better, artworks with individual names each that have been
catalogued by museums, libraries, or regional authorities (i.e. for monuments, buildings, etc). For this
reason, the domain of the property is class ecrm:E22_Human-Made_Object.

 CONATerm is a class

 CONATerm is a subclass of ecrm:E55_Type

 hasCONATerm is an object property

 hasCONATerm is a subproperty of ecrm:P2_has_type

 The domain of hasCONATerm is class ecrm:E22_Human-Made_Object

 The range of hasCONATerm is class CONATerm

CONA would seem rather irrelevant for craft artefacts. The reason is that although each craft item is
unique, it rarely has a specific name, as opposed to a painting or statue. However, we found it very useful
and we are using it for the following two cases. First, when a crafted artefact references another known
artefact. Second, when a crafted artefact references a known event. We provide an example below,
coming from a collection of handcrafted garments whose design was inspired by antiquities.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 88/119

The example regards two items that were inspired by the same archaeological finding, that is the “Small
snake goddess figurine”, http://vocab.getty.edu/page/cona/700000112.

Figure 16. Two pages for two craft artefacts inspired by another artefact that is registered in CONA.

The CONA dictionary provides information on the particular archaeological artefact, thus relieving the
user from documenting that as well.

2.6.1.3 TGN and Geonames

Integration of the TGN and Geonames dictionaries provides geospatial context, enriching the
documentation system with standardised geographic names for locations relevant to cultural heritage.
Thus the domain of both properties hasTGNTerm and hasGeonamesTerm is class ecrm:E53_Place.

http://vocab.getty.edu/page/cona/700000112

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 89/119

 TGNTerm is a class

 TGNTerm is a subclass of ecrm:E55_Type

 hasTGNTerm is an object property

 hasTGNTerm is a subproperty of ecrm:P2_has_type

 The domain of hasTGNTerm is class ecrm:E53_Place

 The range of hasTGNTerm is class TGNTerm

 GeonamesTerm is a class

 GeonamesTerm is a subclass of ecrm:E55_Type

 hasGeonamesTerm is an object property

 hasGeonamesTerm is a subproperty of ecrm:P2_has_type

 The domain of hasGeonamesTerm is class ecrm:E53_Place

 The range of hasGeonamesTerm is class GeonamesTerm

The Geonames dictionary is more comprehensive and detailed than TGN. We have been using it since
early versions of the Mingei Online Platform, in the Mingei project. In this version, we have automated
the extraction of location coordinates (GPS) from the Geonames service, relieving the user from the task
of entering this data, while at the same time, protecting system integrity from human errors.

Although we retrieved location coordinates from the Geonames dictionary, we added the TGN dictionary
as well. The reason is that TGN offers descriptions of the locations that provide historical information.

The example below shows the entry for a city (Athens). As the city is referenced in both dictionaries, both
of the annotations are included:

https://sws.geonames.org/264371/ - Athens

http://vocab.getty.edu/tgn/7001393 - Athens

However, in the case of less known locations, the Geonames directory is much more comprehensive and
includes many more locations.

https://sws.geonames.org/264371/
http://vocab.getty.edu/tgn/7001393

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 90/119

Figure 17. A page for a location knowledge entity, geosemantically annotated with Geonames and TGN labels.

2.6.1.4 ULAN

Linking to ULAN facilitates the identification and documentation of artists associated with cultural
artefacts, ensuring a comprehensive understanding of the individuals behind the creations.

The integration with ULAN serves two purposes. The first is the comprehensive documentation of the
represented knowledge pertinent to artisan names, used either in the documentation of artefacts or in
the representation of narratives. The second is the automation of the completion of biographical
information about the referenced persons. Specifically, we automated the retrieval of the following
attributes from the ULAB service.

● Birth / Death dates.
● Alternative names
● Nationality
● Role(s)

 ULANTerm is a class

 ULANTerm is a subclass of ecrm:E55_Type

 hasULANTerm is an object property

 hasULANTerm is a subproperty of ecrm:P2_has_type

 The domain of hasULANTerm is class ecrm:E21_Person

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 91/119

 The range of hasULANTerm is class ULANTerm

The example below regards a wood carving artist who created wooden sculptures for ecclesiastical altars,
named Francisco Salzillo.

Figure 18. The page for a wood sculptor (person), is semantically annotated with a ULAN label.

Using the ULAN entry for this person,

http://vocab.getty.edu/ulan/500035899 - Salzillo y Alcaraz, Francisco

The aforementioned biographical information has been retrieved and has been entered into the system.
We notice that several alternative names have been retrieved. Moreover, the AAT dictionary has been
used to characterise the type of art produced by this person as follows:

http://vocab.getty.edu/aat/300025181 - sculptors

http://vocab.getty.edu/aat/300025368 - woodworkers

http://vocab.getty.edu/aat/300025382 - woodcarvers (woodworkers)

http://vocab.getty.edu/aat/300435120 - altarpiece sculptors

http://vocab.getty.edu/ulan/500035899
http://vocab.getty.edu/aat/300025181
http://vocab.getty.edu/aat/300025368
http://vocab.getty.edu/aat/300025382
http://vocab.getty.edu/aat/300435120

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 92/119

2.6.1.5 Additional dictionaries

Support is also provided for two more dictionaries, namely the UNESCO thesaurus and the dictionary of
the Greek National Aggregator. No automatic retrieval of information is foreseen for these dictionaries,
as the dictionaries mentioned earlier cover our semantic annotation needs. However, the UNESCO
dictionary is required for ingestion by all National Aggregators and the SearchCulture.gr dictionary is
required by the Greek Aggregator.

 UnescoThesaurusTerm is a class

 UnescoThesaurusTerm is a subclass of ecrm:E55_Type

 hasUnescoThesaurusTerm is an object property

 hasUnescoThesaurusTerm is a subproperty of ecrm:P2_has_type

 The range of hasUnescoThesaurusTerm is class UnescoThesaurusTerm

 UnescoThesaurusTerm is a class

 GNATerm is a subclass of ecrm:E55_Type

 hasGNATerm is an object property

 hasGNATerm is a subproperty of ecrm:P2_has_type

 The range of hasGNATerm is class GNATerm

In Craeft, we plan to submit all of the digital assets collected through the Greek National Aggregator, as it
participated in the Europeana project “CRAFTED”9 and welcomes digital assets pertinent to crafts,
regardless of their national provenance. For this reason, the Greek National Aggregator provides also the
“craft-item-types”10 sub-vocabulary which we also utilise. It ought to be noted, that when using national,
non-English, vocabularies we use the annotation twice with the same URL: once for the national label and
once for the English label. The example below demonstrates this case.

9 https://pro.europeana.eu/project/crafted
10 http://semantics.gr/authorities/vocabularies/craft-item-types

https://pro.europeana.eu/project/crafted
http://semantics.gr/authorities/vocabularies/craft-item-types

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 93/119

Figure 19. The page for a craft artefact, annotated with English and Greek metadata.

In the example, a semantic annotation is noted twice, that is

http://semantics.gr/authorities/ekt-unesco/1924280812 - Κεραμική τέχνη

and

http://semantics.gr/authorities/ekt-unesco/1924280812 - Ceramic art

comes from a national vocabulary that provides associations with the UNESCO vocabulary. Each label is
associated with the corresponding language tag.

Finally, we note that the system is open to any vocabulary the user wishes to include. For example, The
Library of Congress vocabulary can be used, if the aforementioned libraries do not suffice. The example
below demonstrates such a case.

http://semantics.gr/authorities/ekt-unesco/1924280812
http://semantics.gr/authorities/ekt-unesco/1924280812

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 94/119

Figure 20. The page for a craft tool, with semantic annotations including annotations from the Library of Congress.

In the example, the term the vocabulary item

http://id.loc.gov/authorities/subjects/sh2008000736 - Mastic industry

is used to enrich the contextualisation of the shown tool, as the specific term is not found in the
aforementioned vocabularies.

When exporting assets for ingestion to Europeana the annotations of the additional dictionaries are also
included.

2.6.1.6 Implementation

The implementation utilises the APIs provided by Getty to establish seamless connections with AAT,
CONA, TGN, and ULAN. We considered two approaches to the implementation of data retrieval
mechanisms to fetch and update information from these dictionaries.

The offline scenario. In this usage scenario, the user copies the URL of the dictionary term to the system.
A system process (a script) is run periodically in the background that retrieves the data from the dictionary
and completes it offline.

The online scenario. In this usage scenario, we considered either a priori loading of the dictionaries or
dynamically loading the parts of the dictionaries, in an autocomplete fashion.

We have technically reviewed prototypes of both implementation scenarios and selected the offline
scenario. The reason is that in the online scenario, the following disadvantages are encountered.

http://id.loc.gov/authorities/subjects/sh2008000736

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 95/119

● Copying the entire dictionary locally costs storage space and since this is an online system,
energy and maintenance costs. Additionally, as these dictionaries are updated, we would have
to perform this copy periodically.

● Retrieving parts of the dictionary dynamically, either in an autocomplete function or in creating
appropriate UI items (e.g. popup menus) is dependent on the speed of the network connection.
We found that the wait for this retrieval during data entry could be more friendly for the user.

The user interface implementation is shown in the figure below.

Figure 21. The GUI facility for default semantic annotations.

The example shows the default semantic annotations provided by the system, for the case of a person.
The modification of the user interface accommodates the new data fields and presents information from
the integrated dictionaries in a user-friendly manner.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 96/119

3 The CRAEFT Authoring Platform

The Craeft Authoring Platform (CAP) is a Web-based, online, multiple-user authoring platform for the
documentation of traditional crafts that is under development. It is functional and accessible online,
although it is not yet in its final form. The CAP is based on the Mingei Online Platform (MOP) developed
in the Mingei Innovation Action.

Authoritative reports on crafts and conservation [1, 2] identify tangible and intangible craft dimensions.
Tangible dimensions regard materials, tools, and workspaces. Intangible dimensions refer to know-how
and skill, but also collective memories, values, and traditions. We refer to contextual and crafting
intangible dimensions. Contextual dimensions refer to the social and historical context. Crafting
dimensions refer to the knowledge and judgement of the practitioner in handicraft activities.

We briefly review the MOP to provide context on the upgrades that are reported in the remainder of this
deliverable.

The MOP represents traditional craft instances based on two axes:

1. Craft processes. The representation is based on the identification and digital representation of
pertinent data, information, and knowledge that enable the understanding and reenactment of
traditional craft processes.

2. The social and historic context of craft instances. The representation is based on documented
narratives that support the presentation of social and historical context to diverse audiences.

The MOP is based on a systematic method for craft representation, the adoption, knowledge, and
representation standards of the cultural heritage (CH) domain, and the integration of outcomes from
advanced digitization techniques. More specifically, the MOP follows and implements the Mingei Craft
Representation Protocol [3]. A handbook accompanies the MOP elaborating on good practices for its use
[4].

The MOP has been documented in the following publications:

1. A Web-Based Platform for Traditional Craft Documentation. Multimodal Technologies and
Interaction. 2022; 6(5):37, Partarakis N, Doulgeraki V, Karuzaki E, Galanakis G, Zabulis X, Meghini
C, Bartalesi V, Metilli D. This publication presents the technical architecture and GUI of the MOP.

2. Representation of socio-historical context to support the authoring and presentation of
multimodal narratives: The Mingei Online Platform, (2021), N. Partarakis, P. Doulgeraki, E.
Karuzaki, I. Adami, S. Ntoa, D. Metilli, V. Bartalesi, C. Meghini, Y. Marketakis, M. Theodoridou, D.
Kaplanidi, X. Zabulis, ACM Journal on Computing and Cultural Heritage, DOI:10.1145/3465556.
This publication presents the way that contextualisation narratives are represented in the MOP.

3. Digitisation of traditional craft processes, X. Zabulis, C. Meghini, A. Dubois, P. Doulgeraki, N.
Partarakis, I. Adami, E. Karuzaki, A. Carre, N. Patsiouras, D. Kaplanidi, D. Metilli, V. Bartalesi, C.
Ringas, E. Tasiopoulou, Z. Stefanidi, ACM Journal on Computing and Cultural Heritage,
DOI:10.1145/3494675. This publication presents the way that traditional craft processes are
represented in the MOP.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 97/119

4. The Mingei Handbook, X. Zabulis, N. Partarakis, A. Argyros, A. Tsoli, A. Qammaz, I. Adami, P.
Doulgeraki, E. Karuzaki, A. Chatziantoniou, N. Patsiouras, E. Stefanidi, Z. Stefanidi, A. Rigaki, M.
Doulgeraki, A. Patakos, S. Manitsaris, A. Glushkova, B. Olivas-Padilla, D. Menychtas, D.
Makrygiannis, C. Meghini, V. Bartalesi, D. Metilli, N. Magnenat-Thalmann, E. Bakas, N. Cadi, D.
van Dijk, P. de Sterke, M. Wippoo, M. van der Vaart, C. Ringas, M. Fasoula, E. Tasiopoulou, D.
Kaplanidi, L. Pannese, V. Nitti, C. Cuenca, A. Carre, A. Dubois, H. Hauser, C. Beisswenger, D. Blatt,
I. Neumann, U. Denter. DOI:10.5281/zenodo.6580124. This handbook is a guide to good practices
for representing crafts in the MOP.

As the CAP is based on the MOP, we henceforth refer to it as MOP/CAP. Moreover, because the MOP has
already users and a “brand name” while its URL is mentioned in the literature, we have retained the same
WWW address for the platform, which is http://mop.mingei-project.eu.

3.1 Representation of knowledge in the MOP/CAP

In MOP, knowledge is represented using the conceptualisation provided by an ontology, the Mingei Crafts
Ontology (CrO) [5]. The ontology provides a vocabulary and axioms to align the vocabulary terms with the
conceptualization. The ontology harmonizes in a coherent vision multiple sub-domain ontologies, re-using
solid results in knowledge representation that have now become standards, such as (a) ‘Narrative’
modelling, based on an extension of the CIDOC-CRM [6, 7] with narratological concepts; (b) time, based
on the OWL time ontology [8]; (c) content representation, based on RDF; and (d) 4D-fluents for the
representation of time-varying properties. Also, we have designed the required mappings between CrO
and Europeana Data Model (EDM). This will allow us to link particular instances of CrO with Europeana
resources, enabling, therefore, the validation as well as the enrichment of resources and the ingestion of
the latter in Europeana. Furthermore, the implementation of the ontology is based on standards: the Web
architecture for identifying, storing and retrieving the basic resources using Internationalized Resource
Identifiers (IRIs), whether media objects, formal concepts or individuals; RDF as the basic data model for
knowledge; OWL as ontology Web language; and SPARQL as a knowledge extraction language.

3.2 User Interface

A set of GUI components enables the instantiation of knowledge entities, facilitating the entry of attribute
data and the association with recordings that document them.

The formulation of basic data entries is systematised through an authoring environment that builds on
top of an Ontology that adheres to knowledge representation standards in Cultural Heritage [9] and
supports the representation of knowledge about ‘Persons’, ‘Social Groups, ‘Places’, ‘Objects’, and related
‘Media Objects’. This facilitates the data curators in transforming verbal and visual content into data
entries. Furthermore, in MOP, a user-friendly user interface for the data curators is offered for integrating
digitisation results produced by modern digital media and digital capturing technologies including Motion
Capture (MoCap) and 2D and 3D digitisation, thus enhancing their representation capacity.

The front end was implemented using the Research Space11 (RS) toolkit, which provides HTML5 semantic
components for structuring Web authoring forms, template pages, navigation menus, content panels, and

11 https://researchspace.org/

http://mop.mingei-project.eu/
https://researchspace.org/

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 98/119

other interaction and ‘Presentation’ elements (i.e., buttons, searches, drop-downs, table grids, etc.). It
also provides ‘Presentation’ features such as interactive maps, a timeline component for visualising
chronologically ordered events, and various image gallery components. The RS toolkit facilitated rapid
prototyping in the first design iteration. Targeted design prototypes were produced thereafter, to visualize
suggested design solutions and improvements stemming from the results of the design iterations.

UI templates: The ontology provides the semantics of the knowledge representation employed by the RS
toolkit. For example, a representation of a particular location can be associated with the ontology (model)
as being of type ‘Location’. In this context using the RS toolkit UI templates have been created to define
generic views that are being automatically applied to entire sets of instances. An example of a data entry
form for locations is shown in the figure below.

Figure 34. Data entry form for a basic knowledge element (Location).

Application pages: For the ‘Presentation’ of a collection of knowledge such as, for example, the
visualisation of a ‘Presentation’ of a ‘Narration’, application pages are used. These are pages that are not
associated with any entity in the knowledge graph. Using application pages functionality that goes beyond
associations with entities can be built. In application pages, the markup is bound with knowledge from
the ontology. For application pages, HTML5 semantic components are used. The components are custom

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 99/119

HTML5 components that operate on the result of SPARQL queries executed over the knowledge graph.
HTML5 components allow formatting and structuring the content of application pages and templates
providing functionality beyond that of native HTML mark-up.

A human-comprehensible way to present the represented knowledge network is hypertext. The
implementation employs a Web interface that dynamically generates Hypertext Markup Language (HTML)
pages from the knowledge queries and a Web server that transmits them to the Web client (browser). An
individual documentation page is provided for each entity. Semantic links are implemented as hyperlinks
that lead to the pages of cited entities. This way, browsing and exploration of knowledge through semantic
associations are enabled. Contents can be organised and presented spatiotemporally or thematically. A
keyword-based search is provided.

Documentation pages for media objects contain links to digital assets, textual presentation of metadata,
and previews of the associated digital assets. One or more URLs are provided on each page. For media
objects, these links point to the source data files. For knowledge entities, the link points to the RDF
encoding of that entity. For locations and events, specific UI modules are provided. For locations,
embedded, dynamic maps are provided through OpenStreetMap [10]. Timeline and calendar views are
available for events. The figure below, shown is an example of a data entry form for the presentation of a
narrative (left) and the presentation output as seen by the user (right).

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 100/119

Figure 35. Data entry form (left) and presentation (right) for a narrative.

Moreover, the elements stored in the knowledge base are semantically annotated using the Getty Arts
and Architecture Thesaurus. These annotations are presented as hyperlinks for the user to access their
definitions as well as find their place in the conceptual hierarchy. Two examples are provided in the figure
below.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 101/119

Figure 36. Two examples of semantic annotations using controlled vocabularies, one for a craft product (left) and one for a
person (right).

3.3 Progress in Craeft

In Craeft we intend to extend MOP in two directions

1. Accommodate the extended ontology to be developed in Craeft to accommodate new concepts
pertinent to craft simulations. Accordingly, extend the GUI to accommodate the authoring and
presentation of the new concepts.

2. Given our experience of the platform usage, to improve the functionalities and technical facilities
of the MOP. This includes both facilities for the users, as well as technical improvements that
enhance the integrity of the platform. Moreover, these extensions include the adoption of
additional controlled vocabularies, as described below.

In addition, the MOP was extended to accommodate the new RCIs that were introduced in Craeft.

3.4 Multilingualism

Enhancements were made to the MOP/CAP system for traditional crafts, focusing on the implementation
of multilingual support. The effort aimed to improve user experience by allowing the entry of textual data
in multiple languages, thus accommodating the diverse linguistic backgrounds of users.

We consider the MOP/CAP as a valuable platform for preserving and sharing knowledge about traditional
artisanal practices. With this enhancement, we wish to overcome limitations in supporting multiple
languages that hindered its usability for a broader audience.

3.4.1 Objectives

The objectives of this task were the following:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 102/119

● Multilingual Support: Enable users to enter textual data in multiple languages for all textual
fields and entities in the system.

● User-Friendly Interface: Implement an intuitive interface for data entry through online forms
with a convenient language selection mechanism.

3.4.2 Methodology

Our approach followed the two objectives separately.

3.4.2.1 Database schema

To accommodate multilingual support, modifications were made to the database schema. Each textual
field and entity now supports multiple instances, allowing users to input data in different languages. The
implementation of multilingual support involved a systematic approach to database modifications and
user interface enhancements. Users can now input textual data in various languages, with the ability to
add instances for each language.

3.4.2.2 User Interface

The data entry forms were updated to include a pop-up language selection menu alongside each textual
field. This enables users to specify the language of the entered textual data easily. A pop-up menu enables
users to select the language for each textual field, providing a clear and accessible language specification
mechanism.

The panel that presents the documentation for each knowledge entity has also been updated so that it
indicates the language in which each textual entry is written.

The images below illustrate these enhancements.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 103/119

Figure 37. The authoring data entry form (top) and the viewing page (bottom) for a person, illustrate the multilingual
capabilities of the platform.

The first image (top) shows the pop-up menu. The second image (bottom) shows the view panel that
presents the documentation. As can be observed, each textual entry is preceded by an indicator that
specifies the language of the textual field’s content.

3.4.3 Implementation notes

The database schema has been modified to support an arbitrary number of instances so that any number
of languages can be supported. For now, the GUI and specifically the pop-up menu for the textual fields
has five entries, which correspond to the native languages of the RCIs studied in Craeft. These are French,
Spanish, Greek, and German, as well as English which is the default language. The reason we used only
these four languages was usability. In the context of the Craeft project, only these four languages are
used. As such, creating a pop-up menu with numerous language entries would hinder usability. In a future
step, we plan to associate user and craft instance profiles with languages, so that the pop-up menu for
language selection dynamically adapts to the user and the craft instance.

The only textual field for which our implementation slightly differs from what was already mentioned is
the name of knowledge entities, which remains in English. The reason is that this is the default language
of the system. Still, names can be entered in any language, using the alternative name field.

3.5 Cross-references

Updates were made to the MOP/CAP focusing on the improvement of knowledge entity relationships and
the implementation of a computer-aided garbage collection and error correction mechanism. The goal is
to enhance the user experience by providing comprehensive views of associations between knowledge
elements and facilitating the identification and correction of unreferenced entities in the database.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 104/119

Our motivation was the following. As the MOP/CAP evolved, it became imperative to strengthen the
connections between knowledge entities. A computer-aided garbage collection mechanism was
introduced to identify and rectify unreferenced entities, often resulting from data entry errors.

In the following, we call cross-references of knowledge elements the database relations (pointers) that
point to this element from other knowledge elements.

3.5.1 Objectives

● Enhanced Entity Relationships: Enable users to easily navigate and view associations between
different knowledge elements within the system.

● Garbage Collection: Implement a mechanism to identify and manage unreferenced entities for
database cleanliness and accuracy.

● User-Friendly Correction: Introduce a new field in the data entry form to allow users to establish
associations between knowledge entities for improved data integrity.

3.5.2 Methodology

3.5.2.1 Database Relations

The cross-references between knowledge entities were revisited and are now shown when viewing the
knowledge elements. This enables users to navigate through associated elements. This enhancement
promotes a better understanding of the interconnections within the traditional crafts documentation
system. Users can now view all associated knowledge elements when viewing a specific entity, providing
a more comprehensive and interconnected understanding of traditional crafts data.

3.5.2.2 Garbage Collection

Queries were developed to identify unreferenced entities in the database. The results of these queries
are displayed on online Web pages, presenting hyperlinks to unreferenced elements along with a delete
button for corrective actions. Online Web pages showcase unreferenced entities, enabling users to either
delete these entities or follow links for correction.

3.5.2.3 Data Entry Forms

A new field, named "Associate with", was added to the data entry form of each knowledge entity. This
field incorporates a pop-up menu with autocomplete functionality, allowing users to establish
associations during the data entry process. The addition of the "Associate with" field in data entry forms
streamlines the process of establishing associations between knowledge entities, reducing errors and
improving data integrity.

3.5.2.4 Additional queries

Additional queries were formulated in the same spirit to increase the integrity of the knowledge base
contents. Specifically, several queries were formulated to ease the checking of missing inputs or other

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 105/119

user errors. As such the following queries were formulated and added to a Web page, along with an
additional query that presents analytics on the contents of the database.

1. 3D Models Source URLs
2. 3D Models WITHOUT Source URLs
3. 3D Models GLB Sources
4. 3D Models WITHOUT GLB Sources
5. 3D Models Thumbnail image source URLs
6. 3D Models WITHOUT Thumbnail image source URLs
7. 3D Models & Associated with objects
8. 3D Models WITHOUT Associated with objects
9. 3D Models WITHOUT Pilot
10. 3D Models with UNKNOWN Pilot
11. 3D Models WITHOUT Creator
12. 3D Models WITHOUT Creation Date
13. 3D Models WITHOUT Metrics
14. 3D Models WITHOUT Creative Commons licence

15. 3D Motions Source URLs
16. 3D Motions WITHOUT Source URLs
17. 3D Motions WITHOUT Pilot
18. 3D Motions with UNKNOWN Pilot
19. 3D Motions WITHOUT Creator
20. 3D Motions WITHOUT Creation Date
21. 3D Motions WITHOUT Creative Commons licence

22. Embedded Videos Source URLs
23. Embedded Videos WITHOUT source URLs
24. Embedded Videos WITHOUT Pilot
25. Embedded Videos WITHOUT Creator
26. Embedded Videos WITHOUT Creation Date
27. Embedded Videos with UNKNOWN Pilot

28. Events
29. Events WITHOUT Name
30. Events WITHOUT Description
31. Events WITHOUT Pilot
32. Events with UNKNOWN Pilot
33. Events WITHOUT Dates

34. Fabulae
35. Fabulae WITHOUT Description
36. Fabulae WITHOUT Events
37. Fabulae WITHOUT Associated with objects
38. Fabulae WITHOUT Pilot
39. Fabulae with UNKNOWN Pilot

40. Images Thumbnails

http://mop.mingei-project.eu/resource/:karam_test96
http://mop.mingei-project.eu/resource/:karam_test97
http://mop.mingei-project.eu/resource/:karam_test94
http://mop.mingei-project.eu/resource/:karam_test95
http://mop.mingei-project.eu/resource/:karam_test05
http://mop.mingei-project.eu/resource/:karam_test06
http://mop.mingei-project.eu/resource/:karam_test07
http://mop.mingei-project.eu/resource/:karam_test08
http://mop.mingei-project.eu/resource/:karam_test16
http://mop.mingei-project.eu/resource/:karam_test83
http://mop.mingei-project.eu/resource/:karam_test34
http://mop.mingei-project.eu/resource/:karam_test98
http://mop.mingei-project.eu/resource/:karam_test35
http://mop.mingei-project.eu/resource/:karam_test52
http://mop.mingei-project.eu/resource/:karam_test31
http://mop.mingei-project.eu/resource/:karam_test32
http://mop.mingei-project.eu/resource/:karam_test33
http://mop.mingei-project.eu/resource/:karam_test84
http://mop.mingei-project.eu/resource/:karam_test40
http://mop.mingei-project.eu/resource/:karam_test99
http://mop.mingei-project.eu/resource/:karam_test53
http://mop.mingei-project.eu/resource/:karam_test28
http://mop.mingei-project.eu/resource/:karam_test29
http://mop.mingei-project.eu/resource/:karam_test30
http://mop.mingei-project.eu/resource/:karam_test102
http://mop.mingei-project.eu/resource/:karam_test103
http://mop.mingei-project.eu/resource/:karam_test85
http://mop.mingei-project.eu/resource/:karam_test69
http://mop.mingei-project.eu/resource/:karam_test11
http://mop.mingei-project.eu/resource/:karam_test12
http://mop.mingei-project.eu/resource/:karam_test19
http://mop.mingei-project.eu/resource/:karam_test82
http://mop.mingei-project.eu/resource/:karam_test67
http://mop.mingei-project.eu/resource/:karam_test23
http://mop.mingei-project.eu/resource/:karam_test44
http://mop.mingei-project.eu/resource/:karam_test45
http://mop.mingei-project.eu/resource/:karam_test46
http://mop.mingei-project.eu/resource/:karam_test80
http://mop.mingei-project.eu/resource/:karam_test81
http://mop.mingei-project.eu/resource/:vdoulger_1

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 106/119

41. Images WITHOUT Source URLs
42. Images Source URLs WITHOUT Associated with objects
43. Images WITHOUT Pilot
44. Images with UNKNOWN Pilot
45. Images WITHOUT Creator
46. Images WITHOUT Creation Date
47. Images WITHOUT Metrics
48. Images WITHOUT Creative Commons licence

49. Locations
50. Locations WITHOUT Name
51. Locations WITHOUT Image
52. Locations WITHOUT Pilot
53. Locations with UNKNOWN Pilot
54. Locations WITHOUT Associated with event(s)

55. Materials
56. Materials WITHOUT Name
57. Materials Associated with Objects
58. Materials WITHOUT Associated with objects
59. Materials WITHOUT Pilot
60. Materials with UNKNOWN Pilot

61. Narratives
62. Narratives WITHOUT Description
63. Narratives WITHOUT Fabula
64. Narratives WITHOUT Narration
65. Narratives WITHOUT Pilot
66. Narratives with UNKNOWN Pilot

67. Persons
68. Persons WITHOUT Name
69. Persons WITHOUT Image
70. Persons WITHOUT Pilot
71. Persons with UNKNOWN Pilot

72. Pilots

73. Process Schemas
74. Process Schemas WITHOUT Pilot
75. Process Schemas with UNKNOWN Pilot

76. Processes
77. Processes WITHOUT Description
78. Processes WITHOUT Pilot
79. Processes with UNKNOWN Pilot

80. Products
81. Products WITHOUT Name

http://mop.mingei-project.eu/resource/:vdoulger_2
http://mop.mingei-project.eu/resource/:vdoulger_3
http://mop.mingei-project.eu/resource/:karam_test17
http://mop.mingei-project.eu/resource/:karam_test79
http://mop.mingei-project.eu/resource/:karam_test36
http://mop.mingei-project.eu/resource/:karam_test101
http://mop.mingei-project.eu/resource/:karam_test37
http://mop.mingei-project.eu/resource/:karam_test50
http://mop.mingei-project.eu/resource/:karam_test60
http://mop.mingei-project.eu/resource/:karam_test61
http://mop.mingei-project.eu/resource/:karam_test63
http://mop.mingei-project.eu/resource/:karam_test62
http://mop.mingei-project.eu/resource/:karam_test78
http://mop.mingei-project.eu/resource/:karam_test64
http://mop.mingei-project.eu/resource/:karam_test70
http://mop.mingei-project.eu/resource/:karam_test43
http://mop.mingei-project.eu/resource/:vdoulger_4
http://mop.mingei-project.eu/resource/:vdoulger_5
http://mop.mingei-project.eu/resource/:karam_test15
http://mop.mingei-project.eu/resource/:karam_test86
http://mop.mingei-project.eu/resource/:karam_test24
http://mop.mingei-project.eu/resource/:karam_test47
http://mop.mingei-project.eu/resource/:karam_test48
http://mop.mingei-project.eu/resource/:karam_test49
http://mop.mingei-project.eu/resource/:karam_test77
http://mop.mingei-project.eu/resource/:karam_test76
http://mop.mingei-project.eu/resource/:karam_test54
http://mop.mingei-project.eu/resource/:karam_test55
http://mop.mingei-project.eu/resource/:karam_test56
http://mop.mingei-project.eu/resource/:karam_test57
http://mop.mingei-project.eu/resource/:karam_test75
http://mop.mingei-project.eu/resource/:karam_test73
http://mop.mingei-project.eu/resource/:karam_test21
http://mop.mingei-project.eu/resource/:karam_test87
http://mop.mingei-project.eu/resource/:karam_test88
http://mop.mingei-project.eu/resource/:karam_test22
http://mop.mingei-project.eu/resource/:karam_test68
http://mop.mingei-project.eu/resource/:karam_test89
http://mop.mingei-project.eu/resource/:karam_test90
http://mop.mingei-project.eu/resource/:karam_test71
http://mop.mingei-project.eu/resource/:karam_test13

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 107/119

82. Products WITHOUT Description
83. Products WITHOUT Pilot
84. Products with UNKNOWN Pilot
85. Products WITHOUT Material
86. Products WITHOUT Image

87. Social Groups
88. Social Groups WITHOUT Pilot
89. Social Groups with UNKNOWN Pilot

90. Tools
91. Tools WITHOUT Name
92. Tools WITHOUT Description
93. Tools WITHOUT Pilot
94. Tools with UNKNOWN Pilot
95. Tools WITHOUT Material
96. Tools WITHOUT Image

97. Videos Source URLs
98. Videos WITHOUT source URLs
99. Videos WITHOUT Pilot
100. Videos with UNKNOWN Pilot
101. Videos WITHOUT Creator
102. Videos WITHOUT Creation Date
103. Videos WITHOUT Metrics
104. Videos WITHOUT Creative Commons licence

105. Statistics

3.6 Zenodo storage

In collaboration and coordination with representatives of Europeana and Zenodo the digital assets
provided by Craeft are stored in the Zenodo repository, which is funded by the European Commission. As
such, only meta-data are stored in the local file system of the MOP/CAP. An example is shown in the figure
below.

http://mop.mingei-project.eu/resource/:karam_test14
http://mop.mingei-project.eu/resource/:karam_test20
http://mop.mingei-project.eu/resource/:karam_test91
http://mop.mingei-project.eu/resource/:karam_test42
http://mop.mingei-project.eu/resource/:karam_test66
http://mop.mingei-project.eu/resource/:karam_test58
http://mop.mingei-project.eu/resource/:karam_test59
http://mop.mingei-project.eu/resource/:karam_test92
http://mop.mingei-project.eu/resource/:karam_test72
http://mop.mingei-project.eu/resource/:karam_test09
http://mop.mingei-project.eu/resource/:karam_test10
http://mop.mingei-project.eu/resource/:karam_test18
http://mop.mingei-project.eu/resource/:karam_test93
http://mop.mingei-project.eu/resource/:karam_test41
http://mop.mingei-project.eu/resource/:karam_test65
http://mop.mingei-project.eu/resource/:karam_test25
http://mop.mingei-project.eu/resource/:karam_test26
http://mop.mingei-project.eu/resource/:karam_test27
http://mop.mingei-project.eu/resource/:karam_test74
http://mop.mingei-project.eu/resource/:karam_test38
http://mop.mingei-project.eu/resource/:karam_test100
http://mop.mingei-project.eu/resource/:karam_test39
http://mop.mingei-project.eu/resource/:karam_test51
http://mop.mingei-project.eu/resource/:karam_statistics

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 108/119

Figure 40. A Web page at Europeana, with a collection of 10 marble sculptures.

The example regards a collection of 10 marble craft artefacts which can be found on the following
Europeana page

https://www.europeana.eu/el/item/911/https___www_searchculture_gr_aggregator_edm_mingei_000
155_c3ec5fe2_e189_4a4e_88f0_79e3718a1dcd

The 3D assets, as well as their image previews, are all stored on the Zenodo repository.

3.6.1 Technical advantages

Storing assets on Zenodo is important because the online storage space for digital assets of large storage
capacity can be costly. It is therefore more important for small artisanal communities that may have
limited resources.

Moreover, storing digital assets on an online repository (Zenodo) instead of our Web server storage offers
several additional advantages.

● Zenodo is hosted as a cloud service, providing high availability and accessibility from anywhere
with an internet connection. This ensures that digital assets are readily available. Moreover,
Zenodo offers an API and, therefore, the stored content can be used directly by third-party
applications.

● Zenodo implements backup and redundancy measures, ensuring the integrity and availability of
digital assets. This helps protect against data loss due to hardware failures, disasters, or other
unforeseen events.

● Zenodo has invested in security measures, including encryption, access controls, and regular
security updates. This enhances the overall security of digital assets compared to managing our
server. Moreover, Zenodo performs its own server maintenance, updates, and security patches,
reducing the burden of keeping up with security updates.

https://www.europeana.eu/el/item/911/https___www_searchculture_gr_aggregator_edm_mingei_000155_c3ec5fe2_e189_4a4e_88f0_79e3718a1dcd
https://www.europeana.eu/el/item/911/https___www_searchculture_gr_aggregator_edm_mingei_000155_c3ec5fe2_e189_4a4e_88f0_79e3718a1dcd

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 109/119

● Zenodo provides DOIs for the submitted assets and also offers analytics of access, easing the
distribution of assets and enabling the tracking of their access respectively. Moreover, Zenodo
offers compliance certifications with the Creative Commons licences and adheres to industry-
specific regulations, ensuring that data storage practices align with legal requirements and
industry standards.

3.6.2 Ecological advantages

Using Zenodo and cloud storage services in general, instead of hosting digital assets on our Web server
offers ecological benefits.

An advantage is the increased energy efficiency achieved by large-scale cloud providers through
economies of scale and investments in optimised data centres. These providers often utilise advanced
technologies and practices to reduce overall energy consumption, making their infrastructure more
environmentally friendly compared to smaller, less efficient server setups.

Cloud services also promote better resource utilisation by consolidating data and applications on shared
infrastructure. This can lead to more efficient use of hardware resources, resulting in lower energy
consumption per unit of computing power. The use of server virtualization technologies by cloud
providers allows multiple virtual servers to run on a single physical server, contributing to higher server
utilisation rates and reduced energy consumption compared to traditional setups. Additionally, cloud
services enable dynamic scaling of resources based on demand, ensuring that energy consumption is
optimised. During periods of low demand, fewer servers are active, while additional resources can be
provisioned during peak demand, resulting in a more efficient use of energy resources.

3.7 Other enhancements

Two types of exports have been automated and the online viewing of 3D models has been upgraded.

3.7.1 Knowledge element to file

When visiting a page that displays the contents of a knowledge element, it is often that users may wish to
copy this content, e.g. to include it in a document that they are writing etc. Copying from the screen is
possible, but rather inefficient and, at the same time, does not preserve the formatting hierarchy.

To ease users in this task, a button was added that provides the contents of the knowledge element in an
XML file that contains the documentation of knowledge elements organised as per the RDF standard. This
is demonstrated in the figure below.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 110/119

Figure 38. The page for a crafted artefact illustrates the export-to-file capabilities of the platform.

As the exported file is in XML format it can be directly incorporated by several word processing software
suites, including the widely-used MS Word software, as well as Web browsers. Moreover, the XML file can
be directly converted to HTML by several software utilities.

3.7.2 Export for Europeana ingestion

The RDF export mentioned in the previous subsection is utilised for the automation of meta-data exports
for submitting them to National Aggregators and eventually being ingested by Europeana. System
(MOP/CAP) administrators can define a collection of items to be submitted and using the aforementioned
automation the meta-data are automatically exported in an online file that is sent to the national
aggregator.

An example is shown in the figure below.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 111/119

Figure 39. A Web page from the Greek National Aggregator, for a collection of 50 handcrafted garments.

The example shows a collection of 50 handcrafted garments on the page of the Greek National
Aggregator, submitted in the context of Craeft. The digital assets for each garment are images and a 3D
model obtained by photogrammetric reconstruction. This content was ingested by the National
Aggregator on 18 December 2023 and has been forwarded for ingestion by Europeana. The automatically
generated file for this collection can be found at the following link:

http://api.mingei-
project.eu/public/api/metadata?verb=ListRecords&metadataPrefix=edm&set=brandingHeritage

while the page of the Greek National Aggregator for this collection can be found here:

https://www.searchculture.gr/aggregator/portal/collections/brandingHeritage/search?page.page=1&sc
rollPositionX=4057&sortByCount=false&resultsMode=GRID&sortResults=SCORE

3.7.3 Online viewing of 3D models

To enhance the digital presentation of our craft artefacts, we have transitioned our website's 3D viewing
capabilities to the Babylon.js engine. This upgrade aligns with our commitment to leveraging cutting-edge
technology to make cultural and artistic works more accessible and engaging to a global audience.

The primary objectives behind this upgrade were to:

● Improve the visual quality and interactivity of 3D models.
● Enhance user experience with smoother navigation and more intuitive controls.
● Enable advanced features such as real-time lighting, shadows, and animations.
● Ensure broad accessibility across various devices and browsers.
● Foster a deeper appreciation of craft artefacts through immersive digital experiences.

http://api.mingei-project.eu/public/api/metadata?verb=ListRecords&metadataPrefix=edm&set=brandingHeritage
http://api.mingei-project.eu/public/api/metadata?verb=ListRecords&metadataPrefix=edm&set=brandingHeritage
https://www.searchculture.gr/aggregator/portal/collections/brandingHeritage/search?page.page=1&scrollPositionX=4057&sortByCount=false&resultsMode=GRID&sortResults=SCORE
https://www.searchculture.gr/aggregator/portal/collections/brandingHeritage/search?page.page=1&scrollPositionX=4057&sortByCount=false&resultsMode=GRID&sortResults=SCORE

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 112/119

The upgrade process involved the following steps: (1) we evaluated existing 3D model presentation
frameworks and identified their advantages and limitations; we chose Babylon.js based on its
performance, feature set, and compatibility. Babylon.js was seamlessly integrated into the existing CAP
architecture, without any disruption to the user experience and knowledge of system operation; (3)
thereafter, we conducted tests across multiple devices and browsers to ensure compatibility and user
experience consistency.

The main benefits of this upgrade are the increased visual quality in the presentation of 3D models and
the better interactivity features of this viewer. Babylon.js's provides advanced rendering capabilities that
significantly improve the visual quality of our 3D craft artefacts, with realistic textures, lighting, and
shadows that provide a more lifelike and engaging experience. In terms of interactivity, users can now
interact with the 3D models in more meaningful ways, including zooming, rotating, and exploring different
parts of each artefact, which enhances educational and engagement opportunities. Moreover, full-screen
viewing and automated rotational animations are provided, as well as integration with 3D and VR viewing
are provided.

Figure 41. A marble sculpture is shown in the Babylon.js viewer using illumination and shadow features of the viewer.

Technically, Babylon.js has an optimized rendering engine ensuring that 3D models load quickly and run
smoothly, even on mobile devices, providing a seamless experience for all users. With Babylon.js, our 3D
models are accessible on a wide range of devices and browsers, ensuring that more users can enjoy our
digital collections without technical barriers.

In the future, we plan to explore further enhancements, including personalized user experiences, AR and
VR integrations, and the use of interactive guides and educational content alongside our 3D models.

3.7.4 Media object types

We have enhanced the types of media objects with two new types.

The "Documents” type is reserved for books, printed works, notebooks, which may be of multiple pages
and are in a document format (e.g. PDF, ePUB). This way, they can be accessed online and through the
web browser, using the plug-in of end-user choice.

The “Data Files” type is a container for formatted data either from simulation or from measurement of
physical quantities (e.g. environment conditions).

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 113/119

3.7.5 Mosaics

The surface digitisation of T3.3 produces multiscale, very high-resolution scans. The storage capacity of
these scans is, correspondingly, significant. The dimensions of these scans are larger than those of
computer monitors. Their access is performed in parts, or tiles, to reduce access time viewer waiting time.
This is achieved by loading only the visible tile(s), given the viewpoint and magnification of the GUI. When
viewing such data online, this access strategy reduces waiting time further, as loading over the network
is slower. This access pattern is widely used in online map viewers which provide magnification.

The datasets produced using the approach of T3.3 exhibit an additional property compared to
conventional image mosaics, which are photographed from a single distance. Due to their way of
acquisition, these datasets contain additional, high-resolution mosaics that image the surface at different
(larger) distances. Moreover, these mosaics are aligned (spatially registered) with the very high-resolution
mosaic, which corresponds to the closest distance. These two properties make these datasets ideal for
viewing the surface at multiple scales (magnifications). The reason is that at each magnification an
authentic photograph is presented to the viewer, without a processed minification of the high-resolution
mosaic. Besides providing more accurate and more realistic results, the user experience is more natural
and pleasing and has a smaller response time because no image processing is performed. Online map
applications retrieve images acquired at different heights (i.e. satellite, aerial) and present them likewise
for the same reasons.

To digitally preserve the obtained surface digitisations without multiscale information and for efficient
access, we employ a multiscale, tile-oriented mosaic viewer. Correspondingly we use an online viewer
(OpenSeaDragon) to show the image properly. Our goal is to streamline the scanning process and
automatically produce such manifest files. We adopted the OpenSeaDragon because it is IIIF compatible.
Currently, this viewer is integrated with the CAP [DEMO]. This is demonstrated in the following diagram:

https://openseadragon.github.io/examples/tilesource-iiif/
http://mop.mingei-project.eu/media/Mosaic/dataset1/exampleViewer/exampleViewer_absolute_path.htm

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 114/119

Figure 42. Multiscale image tiling with the OpenSeaDragon viewer.

When the user zooms into an image the viewer only shows you the tiles that are in your view. The view is
shown in the red box. This means a very large image can be viewed but the viewer never downloads all of
the images. Only the ones that are required. Here is an example of how we use OpenSeaDragon to show
this type of content:

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 115/119

Figure 43. Example usage of the OpenSeaDragon viewer on a textile scan.

The user can use the mouse scroll to zoom and the navigator to move into the image area. HTML files and
image files are stored on our server. For testing, we installed locally one of the available IIIF-compatible
image servers, Cantaloupe to generate manifests for image tiles. We uploaded to the server, the structure
of the above mosaic. Each image tile is accessible with the IIIF URL. An IIIF JSON manifest is dynamically
produced for each image tile. We uploaded to the MOP server a testing mosaic, with all image-tiles
references being made with URLs of the local Cantaloupe IIIF image server and referring to images
uploaded to it. We also created a script for the dynamic generation-storage of a separate IIIF manifest for
each image-tile of the mosaic.

https://iiif.io/get-started/image-servers/
https://iiif.io/get-started/image-servers/
https://cantaloupe-project.github.io/

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 116/119

4 Conclusions

This document has presented the CRAEFT Ontology and the CRAEFT authoring Platform.

The CRAEFT Ontology, named CrO, is an application ontology used for representing crafts in the CRAEFT
project. For interoperability, the CrO is built on standards. It is an extension of the CIDOC CRM with the
concepts needed for representing processes at three different levels:

● The schema level, including descriptions of processes and their components, is used for
descriptive and prescriptive purposes, as illustrated in Section 2.5.1.1.

● The virtual level, including descriptions of the execution of processes and actions performed by
digital agents in the virtual world, is used for comparative purposes, as illustrated in Section
2.5.1.2.

● The physical level, including descriptions of the execution of processes and actions performed by
human agents in the real world, is used for documentation and preservation purposes, as
illustrated in Section 2.5.1.3.

The notion of process is inspired by the UML conceptualization of activities, providing primitive categories
for processes, their components and the interrelations of these components. At the physical level,
processes are also seen as narratives, thereby acquiring narrations and presentations as fundamental
aspects, not considered in the UML conceptualisation, but crucial for the achievements of the CRAEFT
objectives. The ontology of narratives, previously developed by the authors, is therefore a fundamental
component of the CrO.

Finally, the CrO is expressed in the standard language OWL 2 DL, the most expressive representative of
the OWL family of languages that retains computational amenability.

The CrO has been applied to represent a few realistic samples of processes and actions, to the end of
showing its adequacy preliminarily. A more substantial evaluation of the ontology will be performed in
the prosecution of the project, putting the CrO at work on the Representative Craft Instances selected by
the project.

The CrO allows linking to the Getty AAT, CONA, TGN, and ULAN dictionaries, as a way to enhance
interoperability while enriching the online semantic documentation system. Users can thereby benefit
from:

● Expanded vocabulary for more accurate and standardised artefact descriptions.
● Detailed insights into art collections, enhancing cultural exploration.
● Geospatial context for cultural heritage locations, improving contextual understanding.
● Artist information for a deeper appreciation of the creators behind cultural artefacts.

The integration of Getty AAT, CONA, TGN, and ULAN into our online semantic documentation system
marks a milestone in advancing the platform's capacity for cultural heritage documentation. This
enhancement positions our system as a comprehensive and authoritative resource for users interested in
exploring and understanding cultural artefacts, collections, and the individuals behind the creations.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 117/119

The Craeft Authoring Platform (CAP) is a Web-based, online, multiple-user authoring platform for the
documentation of traditional crafts that is under development. It is functional and accessible online,
although it is not yet in its final form. The CAP is based on the Mingei Online Platform (MOP) developed
in the Mingei Innovation Action.

The implementation of multilingual support has resulted in a more inclusive and user-friendly system.
Users can now document traditional crafts in multiple languages, promoting diversity and inclusivity in
the knowledge preservation process.

The implementation of multilingual support in the online documentation system is a step towards
inclusivity and accessibility. This enhancement ensures that the platform remains a valuable resource for
individuals across different linguistic backgrounds, fostering the preservation and exchange of traditional
craft knowledge.

The implementation of enhanced entity relationships and garbage collection has resulted in a more
cohesive and accurate documentation system. Users benefit from a clearer visualisation of associations,
while the garbage collection mechanism ensures the removal or correction of unreferenced entities for
improved data quality.

The updates to the online documentation system mark an advancement in both user experience and
database cleanliness. The strengthened relationships between knowledge entities and the introduction
of garbage collection contribute to the system's overall efficiency and reliability, ensuring a robust
platform for the documentation of traditional crafts.

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 118/119

References

[1] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language structural
specification and functional-style syntax (second edition). W3C recommendation, W3C, December
2012. http://www.w3.org/TR/ 2012/REC-owl2-syntax-20121211/.

[2] Martin Doerr. The CIDOC Conceptual Reference Model: An ontological approach to semantic
interoperability of metadata. AI Mag., 24(3):75–92, September 2003.

[3] The CIDOC CRM Special Interest Group. Definition of the CIDOC Conceptual Reference Model. Version
7.2.3, May 2023. Available from https://www.cidoc-crm.org/releases_table

[4] Technical Committee: ISO/TC 46/SC 4 Technical interoperability. ISO 21127:2014 - Information and
documentation — A reference ontology for the interchange of cultural heritage information.
https://www.iso.org/standard/57832.html

[5] N. Guarino. Formal ontology in information systems. In Proceedings of FOIS 98, pages 3–15. IOS Press,
Amsterdam, 1998. Amended version.

[6] V. Bartalesi, C. Meghini, and D. Metilli. Representing Narratives in Digital Libraries: The Narrative
Ontology. Semantic Web, 12(2), 241-264.

[7] Simon Cox, Chris Little. Time Ontology in OWL. W3C Recommendation 19 October 2017.
https://www.w3.org/TR/owl-time/

[8] DCMI Metadata Terms. Dublin Core Metadata Initiative.
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

[9] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Reference Manual.
Second Edition. Addison-Wesley. 2005.

[10] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 concepts and abstract syntax. W3C
Recommendation, WWW Consortium, February 2014. http://www.w3.org/TR/rdf11-concepts/.

[11] Dan Brickley and R.V. Guha. RDF schema 1.1. W3C Recommendation, WWW Consortium, February
2014. http://www.w3.org/TR/rdf-schema/

[12] XML schema definition language (XSD) 1.1 part 2: Datatypes. W3C Recommendation, WWW
Consortium, April 2012. http://www.w3.org/TR/xmlschema11-2/.

[13] Hiebel, G., Doerr, M. & Eide, Ø. CRMgeo: A spatiotemporal extension of CIDOC-CRM. Int J Digit Libr
18, 271–279 (2017). https://doi.org/10.1007/s00799-016-0192-4. Formal specifications available at
https://www.cidoc-crm.org/crmgeo/home-5

[14] Chris WELTY and Richard FIKES. A Reusable Ontology for Fluents in OWL. Proceedings of the 2006
conference on Formal Ontology in Information Systems: (FOIS 2006) Frontiers in Artificial Intelligence
and Applications. Volume 150: Formal Ontology in Information Systems. IO-Press. May 2006. Pages
226–236.

[15] S. Borgo, R. Ferrario, A. Gangemi, N. Guarino, C. Masolo, D. Porello, E. Sanfilippo, L. Vieu. DOLCE: A
descriptive ontology for linguistic and cognitive engineering. Applied Ontology, vol. 17, no. 1, pp. 45-
69, 2022.

[16] Cominelli F., 2011. Governing Cultural Commons: The case of traditional craftsmanship in France. In
Biennial Conference. International Association for the Study of the Commons, Hyderabad, India, 1–
27.

[17] Donkin L., 2001. Crafts and Conservation. Report. ICCROM.
[18] Zabulis X, Partarakis N, Meghini C, Dubois A, Manitsaris S, Hauser H, Magnenat Thalmann N, Ringas

C, Panesse L, Cadi N, Baka E, Beisswenger C, Makrygiannis D, Glushkova A, Padilla BEO, Kaplanidi D,
Tasiopoulou E, Cuenca C, Carre A-L, Nitti V, Adami I, Zidianakis E, Doulgeraki P, Karouzaki E, Bartalesi
V, Metilli D. A Representation Protocol for Traditional Crafts. Heritage. 2022; 5(2):716-741.
DOI:10.3390/heritage5020040.

https://www.cidoc-crm.org/releases_table
https://www.w3.org/TR/owl-time/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xmlschema11-2/
https://www.cidoc-crm.org/crmgeo/home-5

D2.2 Maker-Material-Negotiation Model and CAP, second release

Craeft D2.2 119/119

[19] X. Zabulis, N. Partarakis, A. Argyros, A. Tsoli, A. Qammaz, I. Adami, P. Doulgeraki, E. Karuzaki, A.
Chatziantoniou, N. Patsiouras, E. Stefanidi, Z. Stefanidi, A. Rigaki, M. Doulgeraki, A. Patakos, S.
Manitsaris, A. Glushkova, B. Olivas-Padilla, D. Menychtas, D. Makrygiannis, C. Meghini, V. Bartalesi,
D. Metilli, N. Magnenat-Thalmann, E. Bakas, N. Cadi, D. van Dijk, P. de Sterke, M. Wippoo, M. van der
Vaart, C. Ringas, M. Fasoula, E. Tasiopoulou, D. Kaplanidi, L. Pannese, V. Nitti, C. Cuenca, A. Carre, A.
Dubois, H. Hauser, C. Beisswenger, D. Blatt, I. Neumann, U. Denter. The Mingei Handbook,
https://doi.org/10.5281/zenodo.6580124

[20] Meghini C., Bartalesi V., Metilli D., Partarakis N., and Zabulis X.. 2020. Mingei Crafts Ontology.
Retrieved from https://zenodo.org/record/3742829#.Xw1prigzZaR

[21] Meghini C. and Doerr M.. 2018. A first-order logic expression of the CIDOC conceptual reference
model. Int. J. Metadata Semant. Ontol. 13, 2 (2018), 131–149.

[22] Doerr M.. 2003. The CIDOC conceptual reference model: An ontological approach to semantic
interoperability of metadata. AI Mag. 24, 3 (2003), 75–92.

[23] Cox S. and Little C. 2017. Time Ontology in OWL, W3C Recommendation. Retrieved from
https://www.w3.org/TR/owl-time/

[24] ISO 21127:2014. Information and documentation—A reference ontology for the interchange of
cultural heritage information.

[25] Foundation Open Street Map. 2021. Open Street Map. https://www.openstreetmap.org/.

https://doi.org/10.5281/zenodo.6580124
https://zenodo.org/record/3742829#.Xw1prigzZaR
https://www.w3.org/TR/owl-time/
https://www.openstreetmap.org/

